Glance accepts a model object and returns a tibble::tibble()
with exactly one row of model summaries. The summaries are typically
goodness of fit measures, p-values for hypothesis tests on residuals,
or model convergence information.
Glance never returns information from the original call to the modeling function. This includes the name of the modeling function or any arguments passed to the modeling function.
Glance does not calculate summary measures. Rather, it farms out these
computations to appropriate methods and gathers the results together.
Sometimes a goodness of fit measure will be undefined. In these cases
the measure will be reported as NA.
Glance returns the same number of columns regardless of whether the
model matrix is rank-deficient or not. If so, entries in columns
that no longer have a well-defined value are filled in with an NA
of the appropriate type.
# S3 method for felm glance(x, ...)
| x | A |
|---|---|
| ... | Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in |
A tibble::tibble() with exactly one row and columns:
Adjusted R squared statistic, which is like the R squared statistic except taking degrees of freedom into account.
Degrees of freedom used by the model.
Residual degrees of freedom.
Number of observations used.
P-value corresponding to the test statistic.
R squared statistic, or the percent of variation explained by the model. Also known as the coefficient of determination.
Estimated standard error of the residuals.
Test statistic.
library(lfe) N <- 1e2 DT <- data.frame( id = sample(5, N, TRUE), v1 = sample(5, N, TRUE), v2 = sample(1e6, N, TRUE), v3 = sample(round(runif(100, max = 100), 4), N, TRUE), v4 = sample(round(runif(100, max = 100), 4), N, TRUE) ) result_felm <- felm(v2 ~ v3, DT) tidy(result_felm)#> # A tibble: 2 x 5 #> term estimate std.error statistic p.value #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 (Intercept) 467859. 61258. 7.64 1.49e-11 #> 2 v3 98.7 1035. 0.0954 9.24e- 1augment(result_felm)#> # A tibble: 100 x 4 #> v2 v3 .fitted .resid #> <int> <dbl> <dbl> <dbl> #> 1 638177 54.7 473257. 164920. #> 2 282741 58.7 473656. -190915. #> 3 569992 58.3 473610. 96382. #> 4 435417 41.8 471982. -36565. #> 5 289325 45.8 472378. -183053. #> 6 100010 4.21 468275. -368265. #> 7 949382 80.1 475768. 473614. #> 8 457661 37.4 471552. -13891. #> 9 539312 78.2 475575. 63737. #> 10 8949 66.7 474438. -465489. #> # … with 90 more rows#> # A tibble: 11 x 7 #> term estimate std.error statistic p.value N comp #> <chr> <dbl> <dbl> <dbl> <dbl> <int> <dbl> #> 1 v3 849. 1124. 0.755 0.452 NA NA #> 2 id.1 444564. 109308. 4.07 0.000553 21 1 #> 3 id.2 416048. 108928. 3.82 0.00107 20 1 #> 4 id.3 476088. 105216. 4.52 0.000152 23 1 #> 5 id.4 377947. 117362. 3.22 0.00502 17 1 #> 6 id.5 415149. 117061. 3.55 0.00216 19 1 #> 7 v1.1 0 0 NaN NaN 25 1 #> 8 v1.2 28466. 81280. 0.350 0.730 20 1 #> 9 v1.3 61511. 105015. 0.586 0.567 14 1 #> 10 v1.4 -134391. 88261. -1.52 1.85 17 1 #> 11 v1.5 36990. 88533. 0.418 0.680 24 1#> # A tibble: 1 x 5 #> term estimate std.error statistic p.value #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 v3 849. 1131. 0.750 0.455augment(result_felm)#> # A tibble: 100 x 6 #> v2 v3 id v1 .fitted .resid #> <int> <dbl> <int> <int> <dbl> <dbl> #> 1 638177 54.7 3 5 559497. 78680. #> 2 282741 58.7 3 3 587449. -304708. #> 3 569992 58.3 2 1 465497. 104495. #> 4 435417 41.8 2 2 479965. -44548. #> 5 289325 45.8 3 1 514946. -225621. #> 6 100010 4.21 5 2 447188. -347178. #> 7 949382 80.1 4 5 482944. 466438. #> 8 457661 37.4 1 3 537826. -80165. #> 9 539312 78.2 2 4 348000. 191312. #> 10 8949 66.7 3 4 398271. -389322. #> # … with 90 more rowsv1 <- DT$v1 v2 <- DT$v2 v3 <- DT$v3 id <- DT$id result_felm <- felm(v2 ~ v3 | id + v1) tidy(result_felm)#> # A tibble: 1 x 5 #> term estimate std.error statistic p.value #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 v3 849. 1124. 0.755 0.452augment(result_felm)#> # A tibble: 100 x 6 #> v2 v3 id v1 .fitted .resid #> <int> <dbl> <int> <int> <dbl> <dbl> #> 1 638177 54.7 3 5 559497. 78680. #> 2 282741 58.7 3 3 587449. -304708. #> 3 569992 58.3 2 1 465497. 104495. #> 4 435417 41.8 2 2 479965. -44548. #> 5 289325 45.8 3 1 514946. -225621. #> 6 100010 4.21 5 2 447188. -347178. #> 7 949382 80.1 4 5 482944. 466438. #> 8 457661 37.4 1 3 537826. -80165. #> 9 539312 78.2 2 4 348000. 191312. #> 10 8949 66.7 3 4 398271. -389322. #> # … with 90 more rowsglance(result_felm)#> # A tibble: 1 x 8 #> r.squared adj.r.squared sigma statistic p.value df df.residual nobs #> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <int> <int> #> 1 0.0527 -0.0421 314086. 0.556 0.829 90 90 100