Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
# S3 method for coeftest tidy(x, conf.int = FALSE, conf.level = 0.95, ...)
| x | A |
|---|---|
| conf.int | Logical indicating whether or not to include a confidence
interval in the tidied output. Defaults to |
| conf.level | The confidence level to use for the confidence interval
if |
| ... | Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in |
A tibble::tibble() with columns:
Upper bound on the confidence interval for the estimate.
Lower bound on the confidence interval for the estimate.
The estimated value of the regression term.
The two-sided p-value associated with the observed statistic.
The value of a T-statistic to use in a hypothesis that the regression term is non-zero.
The standard error of the regression term.
The name of the regression term.
library(lmtest) data(Mandible) fm <- lm(length ~ age, data = Mandible, subset = (age <= 28)) lmtest::coeftest(fm)#> #> t test of coefficients: #> #> Estimate Std. Error t value Pr(>|t|) #> (Intercept) -11.953366 0.976227 -12.245 < 2.2e-16 *** #> age 1.772730 0.047704 37.161 < 2.2e-16 *** #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #>#> # A tibble: 2 x 5 #> term estimate std.error statistic p.value #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 (Intercept) -12.0 0.976 -12.2 1.39e-24 #> 2 age 1.77 0.0477 37.2 2.15e-79