Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
# S3 method for confusionMatrix tidy(x, by_class = TRUE, ...)
| x | An object of class |
|---|---|
| by_class | Logical indicating whether or not to show performance
measures broken down by class. Defaults to |
| ... | Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in |
A tibble::tibble() with columns:
The class under consideration.
Upper bound on the confidence interval for the estimate.
Lower bound on the confidence interval for the estimate.
The estimated value of the regression term.
The name of the regression term.
P-value for accuracy and kappa statistics.
library(caret)#>#> #>#> #> #>#> #> #>#> #> #> #>#> #>#> #> #>set.seed(27) two_class_sample1 <- as.factor(sample(letters[1:2], 100, TRUE)) two_class_sample2 <- as.factor(sample(letters[1:2], 100, TRUE)) two_class_cm <- caret::confusionMatrix( two_class_sample1, two_class_sample2 ) tidy(two_class_cm)#> # A tibble: 14 x 6 #> term class estimate conf.low conf.high p.value #> <chr> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 accuracy NA 0.52 0.418 0.621 0.619 #> 2 kappa NA 0.0295 NA NA NA #> 3 mcnemar NA NA NA NA 0.470 #> 4 sensitivity a 0.604 NA NA NA #> 5 specificity a 0.426 NA NA NA #> 6 pos_pred_value a 0.542 NA NA NA #> 7 neg_pred_value a 0.488 NA NA NA #> 8 precision a 0.542 NA NA NA #> 9 recall a 0.604 NA NA NA #> 10 f1 a 0.571 NA NA NA #> 11 prevalence a 0.53 NA NA NA #> 12 detection_rate a 0.32 NA NA NA #> 13 detection_prevalence a 0.59 NA NA NA #> 14 balanced_accuracy a 0.515 NA NA NA#> # A tibble: 3 x 5 #> term estimate conf.low conf.high p.value #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 accuracy 0.52 0.418 0.621 0.619 #> 2 kappa 0.0295 NA NA NA #> 3 mcnemar NA NA NA 0.470# multiclass example six_class_sample1 <- as.factor(sample(letters[1:6], 100, TRUE)) six_class_sample2 <- as.factor(sample(letters[1:6], 100, TRUE)) six_class_cm <- caret::confusionMatrix( six_class_sample1, six_class_sample2 ) tidy(six_class_cm)#> # A tibble: 69 x 6 #> term class estimate conf.low conf.high p.value #> <chr> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 accuracy NA 0.2 0.127 0.292 0.795 #> 2 kappa NA 0.0351 NA NA NA #> 3 mcnemar NA NA NA NA 0.873 #> 4 sensitivity a 0.2 NA NA NA #> 5 specificity a 0.888 NA NA NA #> 6 pos_pred_value a 0.308 NA NA NA #> 7 neg_pred_value a 0.816 NA NA NA #> 8 precision a 0.308 NA NA NA #> 9 recall a 0.2 NA NA NA #> 10 f1 a 0.242 NA NA NA #> # … with 59 more rows#> # A tibble: 3 x 5 #> term estimate conf.low conf.high p.value #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 accuracy 0.2 0.127 0.292 0.795 #> 2 kappa 0.0351 NA NA NA #> 3 mcnemar NA NA NA 0.873