Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
# S3 method for plm tidy(x, conf.int = FALSE, conf.level = 0.95, ...)
| x | A |
|---|---|
| conf.int | Logical indicating whether or not to include a confidence
interval in the tidied output. Defaults to |
| conf.level | The confidence level to use for the confidence interval
if |
| ... | Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in |
Other plm tidiers:
augment.plm(),
glance.plm()
A tibble::tibble() with columns:
Upper bound on the confidence interval for the estimate.
Lower bound on the confidence interval for the estimate.
The estimated value of the regression term.
The two-sided p-value associated with the observed statistic.
The value of a T-statistic to use in a hypothesis that the regression term is non-zero.
The standard error of the regression term.
The name of the regression term.
library(plm) data("Produc", package = "plm") zz <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp, data = Produc, index = c("state", "year") ) summary(zz)#> Oneway (individual) effect Within Model #> #> Call: #> plm(formula = log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp, #> data = Produc, index = c("state", "year")) #> #> Balanced Panel: n = 48, T = 17, N = 816 #> #> Residuals: #> Min. 1st Qu. Median 3rd Qu. Max. #> -0.120456 -0.023741 -0.002041 0.018144 0.174718 #> #> Coefficients: #> Estimate Std. Error t-value Pr(>|t|) #> log(pcap) -0.02614965 0.02900158 -0.9017 0.3675 #> log(pc) 0.29200693 0.02511967 11.6246 < 2.2e-16 *** #> log(emp) 0.76815947 0.03009174 25.5273 < 2.2e-16 *** #> unemp -0.00529774 0.00098873 -5.3582 1.114e-07 *** #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> Total Sum of Squares: 18.941 #> Residual Sum of Squares: 1.1112 #> R-Squared: 0.94134 #> Adj. R-Squared: 0.93742 #> F-statistic: 3064.81 on 4 and 764 DF, p-value: < 2.22e-16tidy(zz)#> # A tibble: 4 x 5 #> term estimate std.error statistic p.value #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 log(pcap) -0.0261 0.0290 -0.902 3.68e- 1 #> 2 log(pc) 0.292 0.0251 11.6 7.08e- 29 #> 3 log(emp) 0.768 0.0301 25.5 2.02e-104 #> 4 unemp -0.00530 0.000989 -5.36 1.11e- 7#> # A tibble: 4 x 7 #> term estimate std.error statistic p.value conf.low conf.high #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 log(pcap) -0.0261 0.0290 -0.902 3.68e- 1 -0.0830 0.0307 #> 2 log(pc) 0.292 0.0251 11.6 7.08e- 29 0.243 0.341 #> 3 log(emp) 0.768 0.0301 25.5 2.02e-104 0.709 0.827 #> 4 unemp -0.00530 0.000989 -5.36 1.11e- 7 -0.00724 -0.00336#> # A tibble: 4 x 7 #> term estimate std.error statistic p.value conf.low conf.high #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 log(pcap) -0.0261 0.0290 -0.902 3.68e- 1 -0.0739 0.0216 #> 2 log(pc) 0.292 0.0251 11.6 7.08e- 29 0.251 0.333 #> 3 log(emp) 0.768 0.0301 25.5 2.02e-104 0.719 0.818 #> 4 unemp -0.00530 0.000989 -5.36 1.11e- 7 -0.00692 -0.00367augment(zz)#> # A tibble: 816 x 7 #> `log(gsp)` `log(pcap)` `log(pc)` `log(emp)` unemp .fitted .resid #> <pseries> <pseries> <pseries> <pseries> <pseries> <dbl> <pseries> #> 1 10.25478 9.617981 10.48553 6.918201 4.7 10.3 -0.046561413 #> 2 10.28790 9.648720 10.52675 6.929419 5.2 10.3 -0.030640422 #> 3 10.35147 9.678618 10.56283 6.977561 4.7 10.4 -0.016454312 #> 4 10.41721 9.705418 10.59873 7.034828 3.9 10.4 -0.008726974 #> 5 10.42671 9.726910 10.64679 7.064588 5.5 10.5 -0.027084312 #> 6 10.42240 9.759401 10.69130 7.052202 7.7 10.4 -0.022368930 #> 7 10.48470 9.783175 10.82420 7.095893 6.8 10.5 -0.036587629 #> 8 10.53111 9.804326 10.84125 7.146142 7.4 10.6 -0.030020604 #> 9 10.59573 9.824430 10.87055 7.197810 6.3 10.6 -0.018942497 #> 10 10.62082 9.845937 10.90643 7.216709 7.1 10.6 -0.014057170 #> # … with 806 more rowsglance(zz)#> # A tibble: 1 x 7 #> r.squared adj.r.squared statistic p.value deviance df.residual nobs #> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <int> #> 1 0.941 0.937 3065. 0 1.11 764 816