Glance accepts a model object and returns a tibble::tibble() with exactly one row of model summaries. The summaries are typically goodness of fit measures, p-values for hypothesis tests on residuals, or model convergence information.

Glance never returns information from the original call to the modeling function. This includes the name of the modeling function or any arguments passed to the modeling function.

Glance does not calculate summary measures. Rather, it farms out these computations to appropriate methods and gathers the results together. Sometimes a goodness of fit measure will be undefined. In these cases the measure will be reported as NA.

Glance returns the same number of columns regardless of whether the model matrix is rank-deficient or not. If so, entries in columns that no longer have a well-defined value are filled in with an NA of the appropriate type.

# S3 method for gam
glance(x, ...)

Arguments

x

A gam object returned from a call to mgcv::gam().

...

Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in ..., where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you pass conf.lvel = 0.9, all computation will proceed using conf.level = 0.95. Additionally, if you pass newdata = my_tibble to an augment() method that does not accept a newdata argument, it will use the default value for the data argument.

See also

glance(), mgcv::gam()

Other mgcv tidiers: tidy.gam()

Value

A tibble::tibble() with exactly one row and columns:

AIC

Akaike's Information Criterion for the model.

BIC

Bayesian Information Criterion for the model.

deviance

Deviance of the model.

df

Degrees of freedom used by the model.

df.residual

Residual degrees of freedom.

logLik

The log-likelihood of the model. [stats::logLik()] may be a useful reference.

nobs

Number of observations used.

Examples

g <- mgcv::gam(mpg ~ s(hp) + am + qsec, data = mtcars) tidy(g)
#> # A tibble: 1 x 5 #> term edf ref.df statistic p.value #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 s(hp) 2.36 3.02 6.34 0.00218
tidy(g, parametric = TRUE)
#> # A tibble: 3 x 5 #> term estimate std.error statistic p.value #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 (Intercept) 16.7 9.83 1.70 0.101 #> 2 am 4.37 1.56 2.81 0.00918 #> 3 qsec 0.0904 0.525 0.172 0.865
glance(g)
#> # A tibble: 1 x 7 #> df logLik AIC BIC deviance df.residual nobs #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int> #> 1 5.36 -74.4 162. 171. 196. 26.6 32
#> # A tibble: 32 x 11 #> .rownames mpg am qsec hp .fitted .se.fit .resid .hat .sigma #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <lgl> #> 1 Mazda RX4 21 1 16.5 110 24.3 1.03 -3.25 0.145 NA #> 2 Mazda RX4 Wag 21 1 17.0 110 24.3 0.925 -3.30 0.116 NA #> 3 Datsun 710 22.8 1 18.6 93 26.0 0.894 -3.22 0.109 NA #> 4 Hornet 4 Drive 21.4 0 19.4 110 20.2 0.827 1.25 0.0930 NA #> 5 Hornet Sportabo… 18.7 0 17.0 175 15.7 0.815 3.02 0.0902 NA #> 6 Valiant 18.1 0 20.2 105 20.7 0.914 -2.56 0.113 NA #> 7 Duster 360 14.3 0 15.8 245 12.7 1.11 1.63 0.167 NA #> 8 Merc 240D 24.4 0 20 62 25.0 1.45 -0.618 0.287 NA #> 9 Merc 230 22.8 0 22.9 95 21.8 1.81 0.959 0.446 NA #> 10 Merc 280 19.2 0 18.3 123 19.0 0.864 0.211 0.102 NA #> # … with 22 more rows, and 1 more variable: .cooksd <dbl>