Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
# S3 method for lmRob tidy(x, ...)
| x | A |
|---|---|
| ... | Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in |
For tidiers for robust models from the MASS package see
tidy.rlm().
Other robust tidiers:
augment.lmRob(),
glance.glmRob(),
glance.lmRob(),
tidy.glmRob()
#> # A tibble: 2 x 5 #> term estimate std.error statistic p.value #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 (Intercept) 35.6 3.58 9.93 5.37e-11 #> 2 wt -4.91 1.09 -4.49 9.67e- 5#> # A tibble: 32 x 5 #> .rownames mpg wt .fitted .resid #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 Mazda RX4 21 2.62 22.7 1.68 #> 2 Mazda RX4 Wag 21 2.88 21.4 0.431 #> 3 Datsun 710 22.8 2.32 24.2 1.36 #> 4 Hornet 4 Drive 21.4 3.22 19.8 -1.64 #> 5 Hornet Sportabout 18.7 3.44 18.7 -0.0445 #> 6 Valiant 18.1 3.46 18.6 0.457 #> 7 Duster 360 14.3 3.57 18.0 3.72 #> 8 Merc 240D 24.4 3.19 19.9 -4.52 #> 9 Merc 230 22.8 3.15 20.1 -2.72 #> 10 Merc 280 19.2 3.44 18.7 -0.545 #> # … with 22 more rows#> # A tibble: 1 x 5 #> r.squared deviance sigma df.residual nobs #> <dbl> <dbl> <dbl> <int> <int> #> 1 0.567 136. 2.95 30 32