R/betareg-tidiers.R
augment.betareg.RdAugment accepts a model object and a dataset and adds
information about each observation in the dataset. Most commonly, this
includes predicted values in the .fitted column, residuals in the
.resid column, and standard errors for the fitted values in a .se.fit
column. New columns always begin with a . prefix to avoid overwriting
columns in the original dataset.
Users may pass data to augment via either the data argument or the
newdata argument. If the user passes data to the data argument,
it must be exactly the data that was used to fit the model
object. Pass datasets to newdata to augment data that was not used
during model fitting. This still requires that at least all predictor
variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no
.resid column will be included in the output.
Augment will often behave differently depending on whether data or
newdata is given. This is because there is often information
associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.
For convenience, many augment methods provide default data arguments,
so that augment(fit) will return the augmented training data. In these
cases, augment tries to reconstruct the original data based on the model
object with varying degrees of success.
The augmented dataset is always returned as a tibble::tibble with the
same number of rows as the passed dataset. This means that the
passed data must be coercible to a tibble. At this time, tibbles do not
support matrix-columns. This means you should not specify a matrix
of covariates in a model formula during the original model fitting
process, and that splines::ns(), stats::poly() and
survival::Surv() objects are not supported in input data. If you
encounter errors, try explicitly passing a tibble, or fitting the original
model on data in a tibble.
We are in the process of defining behaviors for models fit with various
na.action arguments, but make no guarantees about behavior when data is
missing at this time.
# S3 method for betareg augment( x, data = model.frame(x), newdata = NULL, type.predict, type.residuals, ... )
| x | A |
|---|---|
| data | A base::data.frame or |
| newdata | A |
| type.predict | Character indicating type of prediction to use. Passed
to the |
| type.residuals | Character indicating type of residuals to use. Passed
to the |
| ... | Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in |
For additional details on Cook's distance, see
stats::cooks.distance().
A tibble::tibble() with columns:
Cooks distance.
Fitted or predicted value.
The difference between observed and fitted values.
library(betareg) data("GasolineYield", package = "betareg") mod <- betareg(yield ~ batch + temp, data = GasolineYield) mod#> #> Call: #> betareg(formula = yield ~ batch + temp, data = GasolineYield) #> #> Coefficients (mean model with logit link): #> (Intercept) batch1 batch2 batch3 batch4 batch5 #> -6.15957 1.72773 1.32260 1.57231 1.05971 1.13375 #> batch6 batch7 batch8 batch9 temp #> 1.04016 0.54369 0.49590 0.38579 0.01097 #> #> Phi coefficients (precision model with identity link): #> (phi) #> 440.3 #>#> # A tibble: 12 x 6 #> component term estimate std.error statistic p.value #> <chr> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 mean (Intercept) -6.16 0.182 -33.8 3.44e-250 #> 2 mean batch1 1.73 0.101 17.1 2.59e- 65 #> 3 mean batch2 1.32 0.118 11.2 3.34e- 29 #> 4 mean batch3 1.57 0.116 13.5 8.81e- 42 #> 5 mean batch4 1.06 0.102 10.4 4.06e- 25 #> 6 mean batch5 1.13 0.104 11.0 6.52e- 28 #> 7 mean batch6 1.04 0.106 9.81 1.03e- 22 #> 8 mean batch7 0.544 0.109 4.98 6.29e- 7 #> 9 mean batch8 0.496 0.109 4.55 5.30e- 6 #> 10 mean batch9 0.386 0.119 3.25 1.14e- 3 #> 11 mean temp 0.0110 0.000413 26.6 1.26e-155 #> 12 precision (phi) 440. 110. 4.00 6.29e- 5#> # A tibble: 12 x 8 #> component term estimate std.error statistic p.value conf.low conf.high #> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 mean (Interce… -6.16 1.82e-1 -33.8 3.44e-250 -6.52 -5.80 #> 2 mean batch1 1.73 1.01e-1 17.1 2.59e- 65 1.53 1.93 #> 3 mean batch2 1.32 1.18e-1 11.2 3.34e- 29 1.09 1.55 #> 4 mean batch3 1.57 1.16e-1 13.5 8.81e- 42 1.34 1.80 #> 5 mean batch4 1.06 1.02e-1 10.4 4.06e- 25 0.859 1.26 #> 6 mean batch5 1.13 1.04e-1 11.0 6.52e- 28 0.931 1.34 #> 7 mean batch6 1.04 1.06e-1 9.81 1.03e- 22 0.832 1.25 #> 8 mean batch7 0.544 1.09e-1 4.98 6.29e- 7 0.330 0.758 #> 9 mean batch8 0.496 1.09e-1 4.55 5.30e- 6 0.282 0.709 #> 10 mean batch9 0.386 1.19e-1 3.25 1.14e- 3 0.153 0.618 #> 11 mean temp 0.0110 4.13e-4 26.6 1.26e-155 0.0102 0.0118 #> 12 precision (phi) 440. 1.10e+2 4.00 6.29e- 5 225. 656.#> # A tibble: 12 x 8 #> component term estimate std.error statistic p.value conf.low conf.high #> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 mean (Interc… -6.16 0.182 -33.8 3.44e-250 -6.63e+0 -5.69 #> 2 mean batch1 1.73 0.101 17.1 2.59e- 65 1.47e+0 1.99 #> 3 mean batch2 1.32 0.118 11.2 3.34e- 29 1.02e+0 1.63 #> 4 mean batch3 1.57 0.116 13.5 8.81e- 42 1.27e+0 1.87 #> 5 mean batch4 1.06 0.102 10.4 4.06e- 25 7.96e-1 1.32 #> 6 mean batch5 1.13 0.104 11.0 6.52e- 28 8.67e-1 1.40 #> 7 mean batch6 1.04 0.106 9.81 1.03e- 22 7.67e-1 1.31 #> 8 mean batch7 0.544 0.109 4.98 6.29e- 7 2.63e-1 0.825 #> 9 mean batch8 0.496 0.109 4.55 5.30e- 6 2.15e-1 0.776 #> 10 mean batch9 0.386 0.119 3.25 1.14e- 3 8.03e-2 0.691 #> 11 mean temp 0.0110 0.000413 26.6 1.26e-155 9.90e-3 0.0120 #> 12 precision (phi) 440. 110. 4.00 6.29e- 5 1.57e+2 724.#> # A tibble: 32 x 6 #> yield batch temp .fitted .resid .cooksd #> <dbl> <fct> <dbl> <dbl> <dbl> <dbl> #> 1 0.122 1 205 0.101 1.59 0.0791 #> 2 0.223 1 275 0.195 1.66 0.0917 #> 3 0.347 1 345 0.343 0.211 0.00155 #> 4 0.457 1 407 0.508 -2.88 0.606 #> 5 0.08 2 218 0.0797 0.109 0.0000168 #> 6 0.131 2 273 0.137 -0.365 0.00731 #> 7 0.266 2 347 0.263 0.260 0.00523 #> 8 0.074 3 212 0.0943 -1.77 0.0805 #> 9 0.182 3 272 0.167 1.02 0.0441 #> 10 0.304 3 340 0.298 0.446 0.0170 #> # … with 22 more rows#> # A tibble: 1 x 7 #> pseudo.r.squared df.null logLik AIC BIC df.residual nobs #> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <int> #> 1 0.962 30 84.8 -146. -128. 20 32