Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
# S3 method for Mclust tidy(x, ...)
| x | An |
|---|---|
| ... | Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in |
Other mclust tidiers:
augment.Mclust()
A tibble::tibble() with columns:
The mixing proportion of each component
Number of points assigned to cluster.
The mean for each component. In case of 2+ dimensional models, a column with the mean is added for each dimension. NA for noise component
In case of one-dimensional and spherical models, the variance for each component, omitted otherwise. NA for noise component
Cluster id as a factor.
library(dplyr) library(mclust) set.seed(27) centers <- tibble::tibble( cluster = factor(1:3), num_points = c(100, 150, 50), # number points in each cluster x1 = c(5, 0, -3), # x1 coordinate of cluster center x2 = c(-1, 1, -2) # x2 coordinate of cluster center ) points <- centers %>% mutate( x1 = purrr::map2(num_points, x1, rnorm), x2 = purrr::map2(num_points, x2, rnorm) ) %>% dplyr::select(-num_points, -cluster) %>% tidyr::unnest(c(x1, x2)) m <- mclust::Mclust(points) tidy(m)#> # A tibble: 3 x 6 #> component size proportion variance mean.x1 mean.x2 #> <int> <int> <dbl> <dbl> <dbl> <dbl> #> 1 1 101 0.335 1.12 5.01 -1.04 #> 2 2 150 0.503 1.12 0.0594 1.00 #> 3 3 49 0.161 1.12 -3.20 -2.06#> # A tibble: 300 x 4 #> x1 x2 .class .uncertainty #> <dbl> <dbl> <fct> <dbl> #> 1 6.91 -2.74 1 3.98e-11 #> 2 6.14 -2.45 1 1.99e- 9 #> 3 4.24 -0.946 1 1.47e- 4 #> 4 3.54 0.287 1 2.94e- 2 #> 5 3.91 0.408 1 7.48e- 3 #> 6 5.30 -1.58 1 4.22e- 7 #> 7 5.01 -1.77 1 1.06e- 6 #> 8 6.16 -1.68 1 7.64e- 9 #> 9 7.13 -2.17 1 4.16e-11 #> 10 5.24 -2.42 1 1.16e- 7 #> # … with 290 more rows#> # A tibble: 1 x 7 #> model G BIC logLik df hypvol nobs #> <chr> <int> <dbl> <dbl> <dbl> <dbl> <int> #> 1 EII 3 -2402. -1175. 9 NA 300