Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
# S3 method for survexp tidy(x, ...)
| x | An |
|---|---|
| ... | Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in |
Other survexp tidiers:
glance.survexp()
Other survival tidiers:
augment.coxph(),
augment.survreg(),
glance.aareg(),
glance.cch(),
glance.coxph(),
glance.pyears(),
glance.survdiff(),
glance.survexp(),
glance.survfit(),
glance.survreg(),
tidy.aareg(),
tidy.cch(),
tidy.coxph(),
tidy.pyears(),
tidy.survdiff(),
tidy.survfit(),
tidy.survreg()
A tibble::tibble() with columns:
Number of individuals at risk at time zero.
Point in time.
Estimate survival
library(survival) sexpfit <- survexp( futime ~ 1, rmap = list( sex = "male", year = accept.dt, age = (accept.dt - birth.dt) ), method = "conditional", data = jasa ) tidy(sexpfit)#> # A tibble: 88 x 3 #> time estimate n.risk #> <dbl> <dbl> <int> #> 1 0 1 102 #> 2 1 1.00 102 #> 3 2 1.00 99 #> 4 4 1.00 96 #> 5 5 1.00 94 #> 6 7 1.00 92 #> 7 8 1.00 91 #> 8 10 1.00 90 #> 9 11 1.00 89 #> 10 15 1.00 88 #> # … with 78 more rows#> # A tibble: 1 x 3 #> n.max n.start timepoints #> <int> <int> <int> #> 1 102 102 88