Scoped verbs (_if, _at, _all) have been superseded by the use of
across() in an existing verb. See vignette("colwise") for details.
These scoped variants of arrange() sort a data frame by a
selection of variables. Like arrange(), you can modify the
variables before ordering with the .funs argument.
A tbl object.
A function fun, a quosure style lambda ~ fun(.) or a list of either form.
Additional arguments for the function calls in
.funs. These are evaluated only once, with tidy dots support.
If TRUE, will sort first by grouping variable. Applies to
grouped data frames only.
A list of columns generated by vars(),
a character vector of column names, a numeric vector of column
positions, or NULL.
A predicate function to be applied to the columns
or a logical vector. The variables for which .predicate is or
returns TRUE are selected. This argument is passed to
rlang::as_function() and thus supports quosure-style lambda
functions and strings representing function names.
The grouping variables that are part of the selection participate in the sorting of the data frame.
df <- as_tibble(mtcars)
arrange_all(df)
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 10.4 8 460 215 3 5.42 17.8 0 0 3 4
#> 2 10.4 8 472 205 2.93 5.25 18.0 0 0 3 4
#> 3 13.3 8 350 245 3.73 3.84 15.4 0 0 3 4
#> 4 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
#> 5 14.7 8 440 230 3.23 5.34 17.4 0 0 3 4
#> 6 15 8 301 335 3.54 3.57 14.6 0 1 5 8
#> 7 15.2 8 276. 180 3.07 3.78 18 0 0 3 3
#> 8 15.2 8 304 150 3.15 3.44 17.3 0 0 3 2
#> 9 15.5 8 318 150 2.76 3.52 16.9 0 0 3 2
#> 10 15.8 8 351 264 4.22 3.17 14.5 0 1 5 4
#> # … with 22 more rows
# ->
arrange(df, across())
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 10.4 8 460 215 3 5.42 17.8 0 0 3 4
#> 2 10.4 8 472 205 2.93 5.25 18.0 0 0 3 4
#> 3 13.3 8 350 245 3.73 3.84 15.4 0 0 3 4
#> 4 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
#> 5 14.7 8 440 230 3.23 5.34 17.4 0 0 3 4
#> 6 15 8 301 335 3.54 3.57 14.6 0 1 5 8
#> 7 15.2 8 276. 180 3.07 3.78 18 0 0 3 3
#> 8 15.2 8 304 150 3.15 3.44 17.3 0 0 3 2
#> 9 15.5 8 318 150 2.76 3.52 16.9 0 0 3 2
#> 10 15.8 8 351 264 4.22 3.17 14.5 0 1 5 4
#> # … with 22 more rows
arrange_all(df, desc)
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 33.9 4 71.1 65 4.22 1.84 19.9 1 1 4 1
#> 2 32.4 4 78.7 66 4.08 2.2 19.5 1 1 4 1
#> 3 30.4 4 95.1 113 3.77 1.51 16.9 1 1 5 2
#> 4 30.4 4 75.7 52 4.93 1.62 18.5 1 1 4 2
#> 5 27.3 4 79 66 4.08 1.94 18.9 1 1 4 1
#> 6 26 4 120. 91 4.43 2.14 16.7 0 1 5 2
#> 7 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
#> 8 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
#> 9 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 10 21.5 4 120. 97 3.7 2.46 20.0 1 0 3 1
#> # … with 22 more rows
# ->
arrange(df, across(everything(), desc))
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 33.9 4 71.1 65 4.22 1.84 19.9 1 1 4 1
#> 2 32.4 4 78.7 66 4.08 2.2 19.5 1 1 4 1
#> 3 30.4 4 95.1 113 3.77 1.51 16.9 1 1 5 2
#> 4 30.4 4 75.7 52 4.93 1.62 18.5 1 1 4 2
#> 5 27.3 4 79 66 4.08 1.94 18.9 1 1 4 1
#> 6 26 4 120. 91 4.43 2.14 16.7 0 1 5 2
#> 7 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
#> 8 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
#> 9 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 10 21.5 4 120. 97 3.7 2.46 20.0 1 0 3 1
#> # … with 22 more rows