Scoped verbs (_if, _at, _all) have been superseded by the use of
across() in an existing verb. See vignette("colwise") for details.
These scoped variants of distinct() extract distinct rows by a
selection of variables. Like distinct(), you can modify the
variables before ordering with the .funs argument.
A tbl object.
A function fun, a quosure style lambda ~ fun(.) or a list of either form.
Additional arguments for the function calls in
.funs. These are evaluated only once, with tidy dots support.
If TRUE, keep all variables in .data.
If a combination of ... is not distinct, this keeps the
first row of values.
A list of columns generated by vars(),
a character vector of column names, a numeric vector of column
positions, or NULL.
A predicate function to be applied to the columns
or a logical vector. The variables for which .predicate is or
returns TRUE are selected. This argument is passed to
rlang::as_function() and thus supports quosure-style lambda
functions and strings representing function names.
The grouping variables that are part of the selection are taken into account to determine distinct rows.
df <- tibble(x = rep(2:5, each = 2) / 2, y = rep(2:3, each = 4) / 2)
distinct_all(df)
#> # A tibble: 4 × 2
#> x y
#> <dbl> <dbl>
#> 1 1 1
#> 2 1.5 1
#> 3 2 1.5
#> 4 2.5 1.5
# ->
distinct(df, across())
#> # A tibble: 4 × 2
#> x y
#> <dbl> <dbl>
#> 1 1 1
#> 2 1.5 1
#> 3 2 1.5
#> 4 2.5 1.5
distinct_at(df, vars(x,y))
#> # A tibble: 4 × 2
#> x y
#> <dbl> <dbl>
#> 1 1 1
#> 2 1.5 1
#> 3 2 1.5
#> 4 2.5 1.5
# ->
distinct(df, across(c(x, y)))
#> # A tibble: 4 × 2
#> x y
#> <dbl> <dbl>
#> 1 1 1
#> 2 1.5 1
#> 3 2 1.5
#> 4 2.5 1.5
distinct_if(df, is.numeric)
#> # A tibble: 4 × 2
#> x y
#> <dbl> <dbl>
#> 1 1 1
#> 2 1.5 1
#> 3 2 1.5
#> 4 2.5 1.5
# ->
distinct(df, across(where(is.numeric)))
#> # A tibble: 4 × 2
#> x y
#> <dbl> <dbl>
#> 1 1 1
#> 2 1.5 1
#> 3 2 1.5
#> 4 2.5 1.5
# You can supply a function that will be applied before extracting the distinct values
# The variables of the sorted tibble keep their original values.
distinct_all(df, round)
#> # A tibble: 3 × 2
#> x y
#> <dbl> <dbl>
#> 1 1 1
#> 2 2 1
#> 3 2 2
# ->
distinct(df, across(everything(), round))
#> # A tibble: 3 × 2
#> x y
#> <dbl> <dbl>
#> 1 1 1
#> 2 2 1
#> 3 2 2