scale_x_continuous()
and scale_y_continuous()
are the default
scales for continuous x and y aesthetics. There are three variants
that set the trans
argument for commonly used transformations:
scale_*_log10()
, scale_*_sqrt()
and scale_*_reverse()
.
scale_x_continuous(
name = waiver(),
breaks = waiver(),
minor_breaks = waiver(),
n.breaks = NULL,
labels = waiver(),
limits = NULL,
expand = waiver(),
oob = censor,
na.value = NA_real_,
trans = "identity",
guide = waiver(),
position = "bottom",
sec.axis = waiver()
)
scale_y_continuous(
name = waiver(),
breaks = waiver(),
minor_breaks = waiver(),
n.breaks = NULL,
labels = waiver(),
limits = NULL,
expand = waiver(),
oob = censor,
na.value = NA_real_,
trans = "identity",
guide = waiver(),
position = "left",
sec.axis = waiver()
)
scale_x_log10(...)
scale_y_log10(...)
scale_x_reverse(...)
scale_y_reverse(...)
scale_x_sqrt(...)
scale_y_sqrt(...)
The name of the scale. Used as the axis or legend title. If
waiver()
, the default, the name of the scale is taken from the first
mapping used for that aesthetic. If NULL
, the legend title will be
omitted.
One of:
NULL
for no breaks
waiver()
for the default breaks computed by the
transformation object
A numeric vector of positions
A function that takes the limits as input and returns breaks
as output (e.g., a function returned by scales::extended_breaks()
).
Also accepts rlang lambda function notation.
One of:
An integer guiding the number of major breaks. The algorithm
may choose a slightly different number to ensure nice break labels. Will
only have an effect if breaks = waiver()
. Use NULL
to use the default
number of breaks given by the transformation.
One of:
One of:
NULL
to use the default scale range
A numeric vector of length two providing limits of the scale.
Use NA
to refer to the existing minimum or maximum
A function that accepts the existing (automatic) limits and returns
new limits. Also accepts rlang lambda function
notation.
Note that setting limits on positional scales will remove data outside of the limits.
If the purpose is to zoom, use the limit argument in the coordinate system
(see coord_cartesian()
).
For position scales, a vector of range expansion constants used to add some
padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion()
to generate the values for the expand
argument. The defaults are to
expand the scale by 5% on each side for continuous variables, and by
0.6 units on each side for discrete variables.
One of:
Function that handles limits outside of the scale limits (out of bounds). Also accepts rlang lambda function notation.
The default (scales::censor()
) replaces out of
bounds values with NA
.
scales::squish()
for squishing out of bounds values into range.
scales::squish_infinite()
for squishing infinite values into range.
Missing values will be replaced with this value.
For continuous scales, the name of a transformation object or the object itself. Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms", "identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability", "probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".
A transformation object bundles together a transform, its inverse,
and methods for generating breaks and labels. Transformation objects
are defined in the scales package, and are called <name>_trans
(e.g.,
scales::boxcox_trans()
). You can create your own
transformation with scales::trans_new()
.
A function used to create a guide or its name. See
guides()
for more information.
For position scales, The position of the axis.
left
or right
for y axes, top
or bottom
for x axes.
sec_axis()
is used to specify a secondary axis.
Other arguments passed on to scale_(x|y)_continuous()
For simple manipulation of labels and limits, you may wish to use
labs()
and lims()
instead.
Other position scales:
scale_x_binned()
,
scale_x_date()
,
scale_x_discrete()
p1 <- ggplot(mpg, aes(displ, hwy)) +
geom_point()
p1
# Manipulating the default position scales lets you:
# * change the axis labels
p1 +
scale_x_continuous("Engine displacement (L)") +
scale_y_continuous("Highway MPG")
# You can also use the short-cut labs().
# Use NULL to suppress axis labels
p1 + labs(x = NULL, y = NULL)
# * modify the axis limits
p1 + scale_x_continuous(limits = c(2, 6))
#> Warning: Removed 27 rows containing missing values (geom_point).
p1 + scale_x_continuous(limits = c(0, 10))
# you can also use the short hand functions `xlim()` and `ylim()`
p1 + xlim(2, 6)
#> Warning: Removed 27 rows containing missing values (geom_point).
# * choose where the ticks appear
p1 + scale_x_continuous(breaks = c(2, 4, 6))
# * choose your own labels
p1 + scale_x_continuous(
breaks = c(2, 4, 6),
label = c("two", "four", "six")
)
# Typically you'll pass a function to the `labels` argument.
# Some common formats are built into the scales package:
df <- data.frame(
x = rnorm(10) * 100000,
y = seq(0, 1, length.out = 10)
)
p2 <- ggplot(df, aes(x, y)) + geom_point()
p2 + scale_y_continuous(labels = scales::percent)
p2 + scale_y_continuous(labels = scales::dollar)
p2 + scale_x_continuous(labels = scales::comma)
# You can also override the default linear mapping by using a
# transformation. There are three shortcuts:
p1 + scale_y_log10()
p1 + scale_y_sqrt()
p1 + scale_y_reverse()
# Or you can supply a transformation in the `trans` argument:
p1 + scale_y_continuous(trans = scales::reciprocal_trans())
# You can also create your own. See ?scales::trans_new