These methods modify the data in a mrgsims object and return a data frame. Contrast with the functions in mrgsims_modify.

# S3 method for mrgsims
pull(.data, ...)

# S3 method for mrgsims
filter(.data, ...)

# S3 method for mrgsims
group_by(.data, ..., add = FALSE, .add = FALSE)

# S3 method for mrgsims
distinct(.data, ..., .keep_all = FALSE)

# S3 method for mrgsims
mutate(.data, ...)

# S3 method for each
summarise(.data, funs, ...)

# S3 method for mrgsims
summarise(.data, ...)

# S3 method for mrgsims
do(.data, ..., .dots)

# S3 method for mrgsims
select(.data, ...)

# S3 method for mrgsims
slice(.data, ...)

as_data_frame.mrgsims(.data_, ...)

# S3 method for mrgsims
as_tibble(.data_, ...)

as.tbl.mrgsims(x, ...)

Arguments

.data

an mrgsims object; passed to various dplyr functions

...

passed to other methods

add

passed to dplyr::group_by (for dplyr < 1.0.0)

.add

passed to dplyr::group_by (for dplyr >= 1.0.0)

.keep_all

passed to dplyr::distinct

funs

passed to dplyr::summarise_each

.dots

passed to various dplyr functions

.data_

mrgsims object

x

passed to dplyr::as.tbl

Details

For the select_sims function, the dots ... must be either compartment names or variables in $CAPTURE. An error will be generated if no valid names are selected or the names for selection are not found in the simulated output.

See also

Examples

out <- mrgsim(house(), events = ev(amt = 100), end = 5, delta=1) dplyr::filter(out, time==2)
#> # A tibble: 1 x 7 #> ID time GUT CENT RESP DV CP #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 1 2 9.07 85.0 36.4 4.25 4.25
dplyr::mutate(out, label = "abc")
#> # A tibble: 7 x 8 #> ID time GUT CENT RESP DV CP label #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> #> 1 1 0 0 0 50 0 0 abc #> 2 1 0 100 0 50 0 0 abc #> 3 1 1 30.1 67.8 41.4 3.39 3.39 abc #> 4 1 2 9.07 85.0 36.4 4.25 4.25 abc #> 5 1 3 2.73 87.0 35.1 4.35 4.35 abc #> 6 1 4 0.823 84.6 35.0 4.23 4.23 abc #> 7 1 5 0.248 81.0 35.4 4.05 4.05 abc
dplyr::select(out, time, RESP, CP)
#> # A tibble: 7 x 3 #> time RESP CP #> <dbl> <dbl> <dbl> #> 1 0 50 0 #> 2 0 50 0 #> 3 1 41.4 3.39 #> 4 2 36.4 4.25 #> 5 3 35.1 4.35 #> 6 4 35.0 4.23 #> 7 5 35.4 4.05