Augment accepts a model object and a dataset and adds
information about each observation in the dataset. Most commonly, this
includes predicted values in the .fitted column, residuals in the
.resid column, and standard errors for the fitted values in a .se.fit
column. New columns always begin with a . prefix to avoid overwriting
columns in the original dataset.
Users may pass data to augment via either the data argument or the
newdata argument. If the user passes data to the data argument,
it must be exactly the data that was used to fit the model
object. Pass datasets to newdata to augment data that was not used
during model fitting. This still requires that all columns used to fit
the model are present.
Augment will often behave differently depending on whether data or
newdata is given. This is because there is often information
associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.
For convenience, many augment methods provide default data arguments,
so that augment(fit) will return the augmented training data. In these
cases, augment tries to reconstruct the original data based on the model
object with varying degrees of success.
The augmented dataset is always returned as a tibble::tibble with the
same number of rows as the passed dataset. This means that the
passed data must be coercible to a tibble. At this time, tibbles do not
support matrix-columns. This means you should not specify a matrix
of covariates in a model formula during the original model fitting
process, and that splines::ns(), stats::poly() and
survival::Surv() objects are not supported in input data. If you
encounter errors, try explicitly passing a tibble, or fitting the original
model on data in a tibble.
We are in the process of defining behaviors for models fit with various
na.action arguments, but make no guarantees about behavior when data is
missing at this time.
# S3 method for felm augment(x, data = model.frame(x), ...)
| x | A |
|---|---|
| data | A base::data.frame or |
| ... | Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in |
Other felm tidiers:
tidy.felm()
A tibble::tibble() with columns:
Fitted or predicted value.
The difference between observed and fitted values.
library(lfe)#>#> #>#> #> #>N <- 1e2 DT <- data.frame( id = sample(5, N, TRUE), v1 = sample(5, N, TRUE), v2 = sample(1e6, N, TRUE), v3 = sample(round(runif(100, max = 100), 4), N, TRUE), v4 = sample(round(runif(100, max = 100), 4), N, TRUE) ) result_felm <- felm(v2 ~ v3, DT) tidy(result_felm)#> # A tibble: 2 x 5 #> term estimate std.error statistic p.value #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 (Intercept) 367902. 53533. 6.87 5.89e-10 #> 2 v3 1681. 930. 1.81 7.38e- 2augment(result_felm)#> # A tibble: 100 x 4 #> v2 v3 .fitted .resid #> <int> <dbl> <dbl> <dbl> #> 1 954279 92.8 523955. 430324. #> 2 163605 19.2 400129. -236524. #> 3 156404 95.3 528149. -371745. #> 4 477648 87.5 514997. -37349. #> 5 45239 95.0 527649. -482410. #> 6 578305 53.2 457298. 121007. #> 7 264022 19.3 400305. -136283. #> 8 148408 33.6 424354. -275946. #> 9 360434 0.404 368582. -8148. #> 10 884671 91.9 522427. 362244. #> # … with 90 more rows#> # A tibble: 11 x 7 #> term estimate std.error statistic p.value N comp #> <chr> <dbl> <dbl> <dbl> <dbl> <int> <dbl> #> 1 v3 1514. 923. 1.64 0.104 NA NA #> 2 id.1 439835. 68644. 6.41 0.00000237 21 1 #> 3 id.2 264971. 74941. 3.54 0.00208 20 1 #> 4 id.3 557776. 73529. 7.59 0.000000366 19 1 #> 5 id.4 375976. 71351. 5.27 0.0000240 23 1 #> 6 id.5 411353. 81937. 5.02 0.000105 17 1 #> 7 v1.1 -99914. 71209. -1.40 1.82 16 1 #> 8 v1.2 -81178. 79232. -1.02 1.68 15 1 #> 9 v1.3 0 0 NaN NaN 31 1 #> 10 v1.4 -10660. 90314. -0.118 1.09 15 1 #> 11 v1.5 -7811. 66144. -0.118 1.09 23 1#> # A tibble: 1 x 5 #> term estimate std.error statistic p.value #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 v3 1514. 959. 1.58 0.118augment(result_felm)#> # A tibble: 100 x 6 #> v2 v3 id v1 .fitted .resid #> <int> <dbl> <int> <int> <dbl> <dbl> #> 1 954279 92.8 4 3 516568. 437711. #> 2 163605 19.2 4 3 405009. -241404. #> 3 156404 95.3 4 4 509687. -353283. #> 4 477648 87.5 1 2 491179. -13531. #> 5 45239 95.0 4 1 419982. -374743. #> 6 578305 53.2 2 1 245597. 332708. #> 7 264022 19.3 4 3 405168. -141146. #> 8 148408 33.6 1 3 490694. -342286. #> 9 360434 0.404 3 4 547728. -187294. #> 10 884671 91.9 1 5 571240. 313431. #> # … with 90 more rowsv1 <- DT$v1 v2 <- DT$v2 v3 <- DT$v3 id <- DT$id result_felm <- felm(v2 ~ v3 | id + v1) tidy(result_felm)#> # A tibble: 1 x 5 #> term estimate std.error statistic p.value #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 v3 1514. 923. 1.64 0.104augment(result_felm)#> # A tibble: 100 x 6 #> v2 v3 id v1 .fitted .resid #> <int> <dbl> <int> <int> <dbl> <dbl> #> 1 954279 92.8 4 3 516568. 437711. #> 2 163605 19.2 4 3 405009. -241404. #> 3 156404 95.3 4 4 509687. -353283. #> 4 477648 87.5 1 2 491179. -13531. #> 5 45239 95.0 4 1 419982. -374743. #> 6 578305 53.2 2 1 245597. 332708. #> 7 264022 19.3 4 3 405168. -141146. #> 8 148408 33.6 1 3 490694. -342286. #> 9 360434 0.404 3 4 547728. -187294. #> 10 884671 91.9 1 5 571240. 313431. #> # … with 90 more rowsglance(result_felm)#> # A tibble: 1 x 8 #> r.squared adj.r.squared sigma statistic p.value df df.residual nobs #> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <int> <int> #> 1 0.155 0.0702 262924. 1.83 0.0734 90 90 100