Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
# S3 method for felm tidy(x, conf.int = FALSE, conf.level = 0.95, fe = FALSE, robust = FALSE, ...)
| x | A |
|---|---|
| conf.int | Logical indicating whether or not to include a confidence
interval in the tidied output. Defaults to |
| conf.level | The confidence level to use for the confidence interval
if |
| fe | Logical indicating whether or not to include estimates of
fixed effects. Defaults to |
| robust | Logical indicating robust or clustered standard errors should
be used. See lfe::summary.felm for details. Defaults to |
| ... | Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in |
Other felm tidiers:
augment.felm()
A tibble::tibble() with columns:
Upper bound on the confidence interval for the estimate.
Lower bound on the confidence interval for the estimate.
The estimated value of the regression term.
The two-sided p-value associated with the observed statistic.
The value of a T-statistic to use in a hypothesis that the regression term is non-zero.
The standard error of the regression term.
The name of the regression term.
library(lfe) N <- 1e2 DT <- data.frame( id = sample(5, N, TRUE), v1 = sample(5, N, TRUE), v2 = sample(1e6, N, TRUE), v3 = sample(round(runif(100, max = 100), 4), N, TRUE), v4 = sample(round(runif(100, max = 100), 4), N, TRUE) ) result_felm <- felm(v2 ~ v3, DT) tidy(result_felm)#> # A tibble: 2 x 5 #> term estimate std.error statistic p.value #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 (Intercept) 467859. 61258. 7.64 1.49e-11 #> 2 v3 98.7 1035. 0.0954 9.24e- 1augment(result_felm)#> # A tibble: 100 x 4 #> v2 v3 .fitted .resid #> <int> <dbl> <dbl> <dbl> #> 1 638177 54.7 473257. 164920. #> 2 282741 58.7 473656. -190915. #> 3 569992 58.3 473610. 96382. #> 4 435417 41.8 471982. -36565. #> 5 289325 45.8 472378. -183053. #> 6 100010 4.21 468275. -368265. #> 7 949382 80.1 475768. 473614. #> 8 457661 37.4 471552. -13891. #> 9 539312 78.2 475575. 63737. #> 10 8949 66.7 474438. -465489. #> # … with 90 more rows#> # A tibble: 11 x 7 #> term estimate std.error statistic p.value N comp #> <chr> <dbl> <dbl> <dbl> <dbl> <int> <dbl> #> 1 v3 849. 1124. 0.755 0.452 NA NA #> 2 id.1 444564. 109308. 4.07 0.000553 21 1 #> 3 id.2 416048. 108928. 3.82 0.00107 20 1 #> 4 id.3 476088. 105216. 4.52 0.000152 23 1 #> 5 id.4 377947. 117362. 3.22 0.00502 17 1 #> 6 id.5 415149. 117061. 3.55 0.00216 19 1 #> 7 v1.1 0 0 NaN NaN 25 1 #> 8 v1.2 28466. 81280. 0.350 0.730 20 1 #> 9 v1.3 61511. 105015. 0.586 0.567 14 1 #> 10 v1.4 -134391. 88261. -1.52 1.85 17 1 #> 11 v1.5 36990. 88533. 0.418 0.680 24 1#> # A tibble: 1 x 5 #> term estimate std.error statistic p.value #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 v3 849. 1131. 0.750 0.455augment(result_felm)#> # A tibble: 100 x 6 #> v2 v3 id v1 .fitted .resid #> <int> <dbl> <int> <int> <dbl> <dbl> #> 1 638177 54.7 3 5 559497. 78680. #> 2 282741 58.7 3 3 587449. -304708. #> 3 569992 58.3 2 1 465497. 104495. #> 4 435417 41.8 2 2 479965. -44548. #> 5 289325 45.8 3 1 514946. -225621. #> 6 100010 4.21 5 2 447188. -347178. #> 7 949382 80.1 4 5 482944. 466438. #> 8 457661 37.4 1 3 537826. -80165. #> 9 539312 78.2 2 4 348000. 191312. #> 10 8949 66.7 3 4 398271. -389322. #> # … with 90 more rowsv1 <- DT$v1 v2 <- DT$v2 v3 <- DT$v3 id <- DT$id result_felm <- felm(v2 ~ v3 | id + v1) tidy(result_felm)#> # A tibble: 1 x 5 #> term estimate std.error statistic p.value #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 v3 849. 1124. 0.755 0.452augment(result_felm)#> # A tibble: 100 x 6 #> v2 v3 id v1 .fitted .resid #> <int> <dbl> <int> <int> <dbl> <dbl> #> 1 638177 54.7 3 5 559497. 78680. #> 2 282741 58.7 3 3 587449. -304708. #> 3 569992 58.3 2 1 465497. 104495. #> 4 435417 41.8 2 2 479965. -44548. #> 5 289325 45.8 3 1 514946. -225621. #> 6 100010 4.21 5 2 447188. -347178. #> 7 949382 80.1 4 5 482944. 466438. #> 8 457661 37.4 1 3 537826. -80165. #> 9 539312 78.2 2 4 348000. 191312. #> 10 8949 66.7 3 4 398271. -389322. #> # … with 90 more rowsglance(result_felm)#> # A tibble: 1 x 8 #> r.squared adj.r.squared sigma statistic p.value df df.residual nobs #> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <int> <int> #> 1 0.0527 -0.0421 314086. 0.556 0.829 90 90 100