This is a shortcut for supplying the limits argument to the individual scales. Note that, by default, any values outside the limits will be replaced with NA.

lims(...)

xlim(...)

ylim(...)

Arguments

...

A name-value pair. The name must be an aesthetic, and the value must be either a length-2 numeric, a character, a factor, or a date/time.

A numeric value will create a continuous scale. If the larger value comes first, the scale will be reversed. You can leave one value as NA to compute from the range of the data.

A character or factor value will create a discrete scale.

A date-time value will create a continuous date/time scale.

See also

For changing x or y axis limits without dropping data observations, see coord_cartesian(). To expand the range of a plot to always include certain values, see expand_limits(). For other types of data, see scale_x_discrete(), scale_x_continuous(), scale_x_date().

Examples

# Zoom into a specified area ggplot(mtcars, aes(mpg, wt)) + geom_point() + xlim(15, 20)
#> Warning: Removed 19 rows containing missing values (geom_point).
# reverse scale ggplot(mtcars, aes(mpg, wt)) + geom_point() + xlim(20, 15)
#> Warning: Removed 19 rows containing missing values (geom_point).
# with automatic lower limit ggplot(mtcars, aes(mpg, wt)) + geom_point() + xlim(NA, 20)
#> Warning: Removed 14 rows containing missing values (geom_point).
# You can also supply limits that are larger than the data. # This is useful if you want to match scales across different plots small <- subset(mtcars, cyl == 4) big <- subset(mtcars, cyl > 4) ggplot(small, aes(mpg, wt, colour = factor(cyl))) + geom_point() + lims(colour = c("4", "6", "8"))
ggplot(big, aes(mpg, wt, colour = factor(cyl))) + geom_point() + lims(colour = c("4", "6", "8"))
# There are two ways of setting the axis limits: with limits or # with coordinate systems. They work in two rather different ways. last_month <- Sys.Date() - 0:59 df <- data.frame( date = last_month, price = c(rnorm(30, mean = 15), runif(30) + 0.2 * (1:30)) ) p <- ggplot(df, aes(date, price)) + geom_line() + stat_smooth() p
#> `geom_smooth()` using method = 'loess' and formula 'y ~ x'
# Setting the limits with the scale discards all data outside the range. p + lims(x= c(Sys.Date() - 30, NA), y = c(10, 20))
#> `geom_smooth()` using method = 'loess' and formula 'y ~ x'
#> Warning: Removed 30 rows containing non-finite values (stat_smooth).
#> Warning: Removed 30 row(s) containing missing values (geom_path).
# For changing x or y axis limits **without** dropping data # observations use [coord_cartesian()]. Setting the limits on the # coordinate system performs a visual zoom. p + coord_cartesian(xlim =c(Sys.Date() - 30, NA), ylim = c(10, 20))
#> `geom_smooth()` using method = 'loess' and formula 'y ~ x'