R/geom-crossbar.r
, R/geom-errorbar.r
, R/geom-linerange.r
, and 1 more
geom_linerange.Rd
Various ways of representing a vertical interval defined by x
,
ymin
and ymax
. Each case draws a single graphical object.
geom_crossbar(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
fatten = 2.5,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE
)
geom_errorbar(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE
)
geom_linerange(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE
)
geom_pointrange(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
fatten = 4,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE
)
Set of aesthetic mappings created by aes()
or
aes_()
. If specified and inherit.aes = TRUE
(the
default), it is combined with the default mapping at the top level of the
plot. You must supply mapping
if there is no plot mapping.
The data to be displayed in this layer. There are three options:
If NULL
, the default, the data is inherited from the plot
data as specified in the call to ggplot()
.
A data.frame
, or other object, will override the plot
data. All objects will be fortified to produce a data frame. See
fortify()
for which variables will be created.
A function
will be called with a single argument,
the plot data. The return value must be a data.frame
, and
will be used as the layer data. A function
can be created
from a formula
(e.g. ~ head(.x, 10)
).
The statistical transformation to use on the data for this layer, as a string.
Position adjustment, either as a string, or the result of a call to a position adjustment function.
Other arguments passed on to layer()
. These are
often aesthetics, used to set an aesthetic to a fixed value, like
colour = "red"
or size = 3
. They may also be parameters
to the paired geom/stat.
A multiplicative factor used to increase the size of the
middle bar in geom_crossbar()
and the middle point in
geom_pointrange()
.
If FALSE
, the default, missing values are removed with
a warning. If TRUE
, missing values are silently removed.
The orientation of the layer. The default (NA
)
automatically determines the orientation from the aesthetic mapping. In the
rare event that this fails it can be given explicitly by setting orientation
to either "x"
or "y"
. See the Orientation section for more detail.
logical. Should this layer be included in the legends?
NA
, the default, includes if any aesthetics are mapped.
FALSE
never includes, and TRUE
always includes.
It can also be a named logical vector to finely select the aesthetics to
display.
If FALSE
, overrides the default aesthetics,
rather than combining with them. This is most useful for helper functions
that define both data and aesthetics and shouldn't inherit behaviour from
the default plot specification, e.g. borders()
.
This geom treats each axis differently and, thus, can thus have two orientations. Often the orientation is easy to deduce from a combination of the given mappings and the types of positional scales in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation can be specified directly using the orientation
parameter, which can be either "x"
or "y"
. The value gives the axis that the geom should run along, "x"
being the default orientation you would expect for the geom.
geom_linerange()
understands the following aesthetics (required aesthetics are in bold):
x
or y
ymin
or xmin
ymax
or xmax
alpha
colour
group
linetype
size
Learn more about setting these aesthetics in vignette("ggplot2-specs")
.
stat_summary()
for examples of these guys in use,
geom_smooth()
for continuous analogue,
geom_errorbarh()
for a horizontal error bar.
# Create a simple example dataset
df <- data.frame(
trt = factor(c(1, 1, 2, 2)),
resp = c(1, 5, 3, 4),
group = factor(c(1, 2, 1, 2)),
upper = c(1.1, 5.3, 3.3, 4.2),
lower = c(0.8, 4.6, 2.4, 3.6)
)
p <- ggplot(df, aes(trt, resp, colour = group))
p + geom_linerange(aes(ymin = lower, ymax = upper))
p + geom_pointrange(aes(ymin = lower, ymax = upper))
p + geom_crossbar(aes(ymin = lower, ymax = upper), width = 0.2)
p + geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2)
# Flip the orientation by changing mapping
ggplot(df, aes(resp, trt, colour = group)) +
geom_linerange(aes(xmin = lower, xmax = upper))
# Draw lines connecting group means
p +
geom_line(aes(group = group)) +
geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2)
# If you want to dodge bars and errorbars, you need to manually
# specify the dodge width
p <- ggplot(df, aes(trt, resp, fill = group))
p +
geom_col(position = "dodge") +
geom_errorbar(aes(ymin = lower, ymax = upper), position = "dodge", width = 0.25)
# Because the bars and errorbars have different widths
# we need to specify how wide the objects we are dodging are
dodge <- position_dodge(width=0.9)
p +
geom_col(position = dodge) +
geom_errorbar(aes(ymin = lower, ymax = upper), position = dodge, width = 0.25)
# When using geom_errorbar() with position_dodge2(), extra padding will be
# needed between the error bars to keep them aligned with the bars.
p +
geom_col(position = "dodge2") +
geom_errorbar(
aes(ymin = lower, ymax = upper),
position = position_dodge2(width = 0.5, padding = 0.5)
)