geom_qq()
and stat_qq()
produce quantile-quantile plots. geom_qq_line()
and
stat_qq_line()
compute the slope and intercept of the line connecting the
points at specified quartiles of the theoretical and sample distributions.
geom_qq_line(
mapping = NULL,
data = NULL,
geom = "path",
position = "identity",
...,
distribution = stats::qnorm,
dparams = list(),
line.p = c(0.25, 0.75),
fullrange = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
stat_qq_line(
mapping = NULL,
data = NULL,
geom = "path",
position = "identity",
...,
distribution = stats::qnorm,
dparams = list(),
line.p = c(0.25, 0.75),
fullrange = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
geom_qq(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
...,
distribution = stats::qnorm,
dparams = list(),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
stat_qq(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
...,
distribution = stats::qnorm,
dparams = list(),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
Set of aesthetic mappings created by aes()
or
aes_()
. If specified and inherit.aes = TRUE
(the
default), it is combined with the default mapping at the top level of the
plot. You must supply mapping
if there is no plot mapping.
The data to be displayed in this layer. There are three options:
If NULL
, the default, the data is inherited from the plot
data as specified in the call to ggplot()
.
A data.frame
, or other object, will override the plot
data. All objects will be fortified to produce a data frame. See
fortify()
for which variables will be created.
A function
will be called with a single argument,
the plot data. The return value must be a data.frame
, and
will be used as the layer data. A function
can be created
from a formula
(e.g. ~ head(.x, 10)
).
The geometric object to use display the data
Position adjustment, either as a string, or the result of a call to a position adjustment function.
Other arguments passed on to layer()
. These are
often aesthetics, used to set an aesthetic to a fixed value, like
colour = "red"
or size = 3
. They may also be parameters
to the paired geom/stat.
Distribution function to use, if x not specified
Additional parameters passed on to distribution
function.
Vector of quantiles to use when fitting the Q-Q line, defaults
defaults to c(.25, .75)
.
Should the q-q line span the full range of the plot, or just the data
If FALSE
, the default, missing values are removed with
a warning. If TRUE
, missing values are silently removed.
logical. Should this layer be included in the legends?
NA
, the default, includes if any aesthetics are mapped.
FALSE
never includes, and TRUE
always includes.
It can also be a named logical vector to finely select the aesthetics to
display.
If FALSE
, overrides the default aesthetics,
rather than combining with them. This is most useful for helper functions
that define both data and aesthetics and shouldn't inherit behaviour from
the default plot specification, e.g. borders()
.
stat_qq()
understands the following aesthetics (required aesthetics are in bold):
sample
group
x
y
Learn more about setting these aesthetics in vignette("ggplot2-specs")
.
stat_qq_line()
understands the following aesthetics (required aesthetics are in bold):
sample
group
x
y
Learn more about setting these aesthetics in vignette("ggplot2-specs")
.
Variables computed by stat_qq()
:
sample quantiles
theoretical quantiles
Variables computed by stat_qq_line()
:
x-coordinates of the endpoints of the line segment connecting the points at the chosen quantiles of the theoretical and the sample distributions
y-coordinates of the endpoints
# \donttest{
df <- data.frame(y = rt(200, df = 5))
p <- ggplot(df, aes(sample = y))
p + stat_qq() + stat_qq_line()
# Use fitdistr from MASS to estimate distribution params
params <- as.list(MASS::fitdistr(df$y, "t")$estimate)
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
ggplot(df, aes(sample = y)) +
stat_qq(distribution = qt, dparams = params["df"]) +
stat_qq_line(distribution = qt, dparams = params["df"])
# Using to explore the distribution of a variable
ggplot(mtcars, aes(sample = mpg)) +
stat_qq() +
stat_qq_line()
ggplot(mtcars, aes(sample = mpg, colour = factor(cyl))) +
stat_qq() +
stat_qq_line()
# }