../../../data/GHE/mpn/deployment/deployments/2020-06-09/vignettes/case-study-gtcars.Rmd
case-study-gtcars.Rmd
Let’s make a display table using the gtcars
dataset. We all know mtcars
… what is gtcars
? It’s basically a modernized mtcars
for the gt age. It’s part of the gt package, and here is a preview of the tibble:
# This is `gtcars` dplyr::glimpse(gtcars) #> Rows: 47 #> Columns: 15 #> $ mfr <chr> "Ford", "Ferrari", "Ferrari", "Ferrari", "Ferrari", "Ferr… #> $ model <chr> "GT", "458 Speciale", "458 Spider", "458 Italia", "488 GT… #> $ year <dbl> 2017, 2015, 2015, 2014, 2016, 2015, 2017, 2015, 2015, 201… #> $ trim <chr> "Base Coupe", "Base Coupe", "Base", "Base Coupe", "Base C… #> $ bdy_style <chr> "coupe", "coupe", "convertible", "coupe", "coupe", "conve… #> $ hp <dbl> 647, 597, 562, 562, 661, 553, 680, 652, 731, 949, 573, 54… #> $ hp_rpm <dbl> 6250, 9000, 9000, 9000, 8000, 7500, 8250, 8000, 8250, 900… #> $ trq <dbl> 550, 398, 398, 398, 561, 557, 514, 504, 509, 664, 476, 43… #> $ trq_rpm <dbl> 5900, 6000, 6000, 6000, 3000, 4750, 5750, 6000, 6000, 675… #> $ mpg_c <dbl> 11, 13, 13, 13, 15, 16, 12, 11, 11, 12, 21, 16, 11, 16, 1… #> $ mpg_h <dbl> 18, 17, 17, 17, 22, 23, 17, 16, 16, 16, 22, 22, 18, 20, 2… #> $ drivetrain <chr> "rwd", "rwd", "rwd", "rwd", "rwd", "rwd", "awd", "awd", "… #> $ trsmn <chr> "7a", "7a", "7a", "7a", "7a", "7a", "7a", "7a", "7a", "7a… #> $ ctry_origin <chr> "United States", "Italy", "Italy", "Italy", "Italy", "Ita… #> $ msrp <dbl> 447000, 291744, 263553, 233509, 245400, 198973, 298000, 2…
For the purpose of simply learning more about gt, let’s reduce this 47-row tibble to one that has only 8 rows:
# Get a subset of 8 cars from the `gtcars` dataset: two # from each manufacturer country of origin except the UK gtcars_8 <- gtcars %>% dplyr::group_by(ctry_origin) %>% dplyr::top_n(2) %>% dplyr::ungroup() %>% dplyr::filter(ctry_origin != "United Kingdom") #> Selecting by msrp # Show the `gtcars_8` tibble dplyr::glimpse(gtcars_8) #> Rows: 8 #> Columns: 15 #> $ mfr <chr> "Ford", "Ferrari", "Acura", "Nissan", "Lamborghini", "BMW… #> $ model <chr> "GT", "LaFerrari", "NSX", "GT-R", "Aventador", "i8", "Vip… #> $ year <dbl> 2017, 2015, 2017, 2016, 2015, 2016, 2017, 2016 #> $ trim <chr> "Base Coupe", "Base Coupe", "Base Coupe", "Premium Coupe"… #> $ bdy_style <chr> "coupe", "coupe", "coupe", "coupe", "coupe", "coupe", "co… #> $ hp <dbl> 647, 949, 573, 545, 700, 357, 645, 503 #> $ hp_rpm <dbl> 6250, 9000, 6500, 6400, 8250, 5800, 5000, 6250 #> $ trq <dbl> 550, 664, 476, 436, 507, 420, 600, 479 #> $ trq_rpm <dbl> 5900, 6750, 2000, 3200, 5500, 3700, 5000, 1750 #> $ mpg_c <dbl> 11, 12, 21, 16, 11, 28, 12, 16 #> $ mpg_h <dbl> 18, 16, 22, 22, 18, 29, 19, 22 #> $ drivetrain <chr> "rwd", "rwd", "awd", "awd", "awd", "awd", "rwd", "rwd" #> $ trsmn <chr> "7a", "7a", "9a", "6a", "7a", "6am", "6m", "7a" #> $ ctry_origin <chr> "United States", "Italy", "Japan", "Japan", "Italy", "Ger… #> $ msrp <dbl> 447000, 1416362, 156000, 101770, 397500, 140700, 95895, 1…
Let’s make a display table from this dataset. In doing so we’ll fulfill the following 10 requirements:
trsmn
) codes so that they are readable and understandableLet’s again use dplyr to help make groupings by the ctry_origin
column, which provides the country of origin for the vehicle manufacturer of the car. We can simply use dplyr::group_by()
on the gtcars
dataset and pass that to gt()
. What you get is a display table that arranges the cars into row groups, with the name of the group displayed prominently above.
# Use `group_by()` on `gtcars` and pass that to `gt()` gtcars_8 %>% dplyr::group_by(ctry_origin) %>% gt()
mfr | model | year | trim | bdy_style | hp | hp_rpm | trq | trq_rpm | mpg_c | mpg_h | drivetrain | trsmn | msrp |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
United States | |||||||||||||
Ford | GT | 2017 | Base Coupe | coupe | 647 | 6250 | 550 | 5900 | 11 | 18 | rwd | 7a | 447000 |
Dodge | Viper | 2017 | GT Coupe | coupe | 645 | 5000 | 600 | 5000 | 12 | 19 | rwd | 6m | 95895 |
Italy | |||||||||||||
Ferrari | LaFerrari | 2015 | Base Coupe | coupe | 949 | 9000 | 664 | 6750 | 12 | 16 | rwd | 7a | 1416362 |
Lamborghini | Aventador | 2015 | LP 700-4 Coupe | coupe | 700 | 8250 | 507 | 5500 | 11 | 18 | awd | 7a | 397500 |
Japan | |||||||||||||
Acura | NSX | 2017 | Base Coupe | coupe | 573 | 6500 | 476 | 2000 | 21 | 22 | awd | 9a | 156000 |
Nissan | GT-R | 2016 | Premium Coupe | coupe | 545 | 6400 | 436 | 3200 | 16 | 22 | awd | 6a | 101770 |
Germany | |||||||||||||
BMW | i8 | 2016 | Mega World Coupe | coupe | 357 | 5800 | 420 | 3700 | 28 | 29 | awd | 6am | 140700 |
Mercedes-Benz | AMG GT | 2016 | S Coupe | coupe | 503 | 6250 | 479 | 1750 | 16 | 22 | rwd | 7a | 129900 |
Getting the row groups in the preferred order can be done easily with dplyr’s arrange()
function. For example, we can have groups that are arranged alphabetically by manufacturer (mfr
) and then sorted by highest sticker price (msrp
) to lowest.
mfr | model | year | trim | bdy_style | hp | hp_rpm | trq | trq_rpm | mpg_c | mpg_h | drivetrain | trsmn | msrp |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Japan | |||||||||||||
Acura | NSX | 2017 | Base Coupe | coupe | 573 | 6500 | 476 | 2000 | 21 | 22 | awd | 9a | 156000 |
Nissan | GT-R | 2016 | Premium Coupe | coupe | 545 | 6400 | 436 | 3200 | 16 | 22 | awd | 6a | 101770 |
Germany | |||||||||||||
BMW | i8 | 2016 | Mega World Coupe | coupe | 357 | 5800 | 420 | 3700 | 28 | 29 | awd | 6am | 140700 |
Mercedes-Benz | AMG GT | 2016 | S Coupe | coupe | 503 | 6250 | 479 | 1750 | 16 | 22 | rwd | 7a | 129900 |
United States | |||||||||||||
Dodge | Viper | 2017 | GT Coupe | coupe | 645 | 5000 | 600 | 5000 | 12 | 19 | rwd | 6m | 95895 |
Ford | GT | 2017 | Base Coupe | coupe | 647 | 6250 | 550 | 5900 | 11 | 18 | rwd | 7a | 447000 |
Italy | |||||||||||||
Ferrari | LaFerrari | 2015 | Base Coupe | coupe | 949 | 9000 | 664 | 6750 | 12 | 16 | rwd | 7a | 1416362 |
Lamborghini | Aventador | 2015 | LP 700-4 Coupe | coupe | 700 | 8250 | 507 | 5500 | 11 | 18 | awd | 7a | 397500 |
We could also use factor levels to get a more particular ordering within arrange()
. For example, we can first arrange the groups themselves (the country of origin–ctry_origin
) by our own preferred ordering and then arrange by mfr
and descending msrp
as before. Then, group_by(ctry_origin)
can be used on the sorted tibble before passing this to gt()
.
# Define our preferred order `ctry_origin` order_countries <- c("Germany", "Italy", "United States", "Japan") # Reorder the table rows by our specific ordering of groups gtcars_8 %>% dplyr::arrange( factor(ctry_origin, levels = order_countries), mfr, desc(msrp) ) %>% dplyr::group_by(ctry_origin) %>% gt()
mfr | model | year | trim | bdy_style | hp | hp_rpm | trq | trq_rpm | mpg_c | mpg_h | drivetrain | trsmn | msrp |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Germany | |||||||||||||
BMW | i8 | 2016 | Mega World Coupe | coupe | 357 | 5800 | 420 | 3700 | 28 | 29 | awd | 6am | 140700 |
Mercedes-Benz | AMG GT | 2016 | S Coupe | coupe | 503 | 6250 | 479 | 1750 | 16 | 22 | rwd | 7a | 129900 |
Italy | |||||||||||||
Ferrari | LaFerrari | 2015 | Base Coupe | coupe | 949 | 9000 | 664 | 6750 | 12 | 16 | rwd | 7a | 1416362 |
Lamborghini | Aventador | 2015 | LP 700-4 Coupe | coupe | 700 | 8250 | 507 | 5500 | 11 | 18 | awd | 7a | 397500 |
United States | |||||||||||||
Dodge | Viper | 2017 | GT Coupe | coupe | 645 | 5000 | 600 | 5000 | 12 | 19 | rwd | 6m | 95895 |
Ford | GT | 2017 | Base Coupe | coupe | 647 | 6250 | 550 | 5900 | 11 | 18 | rwd | 7a | 447000 |
Japan | |||||||||||||
Acura | NSX | 2017 | Base Coupe | coupe | 573 | 6500 | 476 | 2000 | 21 | 22 | awd | 9a | 156000 |
Nissan | GT-R | 2016 | Premium Coupe | coupe | 545 | 6400 | 436 | 3200 | 16 | 22 | awd | 6a | 101770 |
The last variation is to combine the manufacturer name with the model name, using those combined strings as row labels for the table. This is just a little more dplyr where we can use dplyr::mutate()
to make a new car
column followed by dplyr::select()
where we remove the mfr
and model
columns. When introducing the tibble to the gt()
function, we can now use the rowname_col
argument to specify a column that will serve as row labels (which is the newly made car
column).
# Reorder the table rows by our specific ordering of groups tab <- gtcars_8 %>% dplyr::arrange( factor(ctry_origin, levels = order_countries), mfr, desc(msrp) ) %>% dplyr::mutate(car = paste(mfr, model)) %>% dplyr::select(-mfr, -model) %>% dplyr::group_by(ctry_origin) %>% gt(rowname_col = "car") # Show the table tab
year | trim | bdy_style | hp | hp_rpm | trq | trq_rpm | mpg_c | mpg_h | drivetrain | trsmn | msrp | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Germany | ||||||||||||
BMW i8 | 2016 | Mega World Coupe | coupe | 357 | 5800 | 420 | 3700 | 28 | 29 | awd | 6am | 140700 |
Mercedes-Benz AMG GT | 2016 | S Coupe | coupe | 503 | 6250 | 479 | 1750 | 16 | 22 | rwd | 7a | 129900 |
Italy | ||||||||||||
Ferrari LaFerrari | 2015 | Base Coupe | coupe | 949 | 9000 | 664 | 6750 | 12 | 16 | rwd | 7a | 1416362 |
Lamborghini Aventador | 2015 | LP 700-4 Coupe | coupe | 700 | 8250 | 507 | 5500 | 11 | 18 | awd | 7a | 397500 |
United States | ||||||||||||
Dodge Viper | 2017 | GT Coupe | coupe | 645 | 5000 | 600 | 5000 | 12 | 19 | rwd | 6m | 95895 |
Ford GT | 2017 | Base Coupe | coupe | 647 | 6250 | 550 | 5900 | 11 | 18 | rwd | 7a | 447000 |
Japan | ||||||||||||
Acura NSX | 2017 | Base Coupe | coupe | 573 | 6500 | 476 | 2000 | 21 | 22 | awd | 9a | 156000 |
Nissan GT-R | 2016 | Premium Coupe | coupe | 545 | 6400 | 436 | 3200 | 16 | 22 | awd | 6a | 101770 |
Let’s hide two columns that we don’t need to the final table: drivetrain
and bdy_style
. We can use the cols_hide()
function to hide columns. The same end result might also have been achieved by using gtcars %>% dplyr::select(-c(drivetrain, bdy_style))
, before introducing the table to gt()
. Why this function then? Sometimes you’ll need variables for conditional statements within gt but won’t want to display them in the end.
Aside from hiding columns, let’s move some of them. Again, this could be done with dplyr::select()
but there are options here in gt via the cols_move_to_start()
, cols_move()
, and cols_move_to_end()
functions.
# Use a few `cols_*()` functions to hide and move columns tab <- tab %>% cols_hide(columns = vars(drivetrain, bdy_style)) %>% cols_move( columns = vars(trsmn, mpg_c, mpg_h), after = vars(trim) ) # Show the table tab
year | trim | trsmn | mpg_c | mpg_h | hp | hp_rpm | trq | trq_rpm | msrp | |
---|---|---|---|---|---|---|---|---|---|---|
Germany | ||||||||||
BMW i8 | 2016 | Mega World Coupe | 6am | 28 | 29 | 357 | 5800 | 420 | 3700 | 140700 |
Mercedes-Benz AMG GT | 2016 | S Coupe | 7a | 16 | 22 | 503 | 6250 | 479 | 1750 | 129900 |
Italy | ||||||||||
Ferrari LaFerrari | 2015 | Base Coupe | 7a | 12 | 16 | 949 | 9000 | 664 | 6750 | 1416362 |
Lamborghini Aventador | 2015 | LP 700-4 Coupe | 7a | 11 | 18 | 700 | 8250 | 507 | 5500 | 397500 |
United States | ||||||||||
Dodge Viper | 2017 | GT Coupe | 6m | 12 | 19 | 645 | 5000 | 600 | 5000 | 95895 |
Ford GT | 2017 | Base Coupe | 7a | 11 | 18 | 647 | 6250 | 550 | 5900 | 447000 |
Japan | ||||||||||
Acura NSX | 2017 | Base Coupe | 9a | 21 | 22 | 573 | 6500 | 476 | 2000 | 156000 |
Nissan GT-R | 2016 | Premium Coupe | 6a | 16 | 22 | 545 | 6400 | 436 | 3200 | 101770 |
It’s sometimes useful to arrange variables/columns into groups by using spanner column labels. This can be done in gt by using the tab_spanner()
function. It takes the label
and columns
arguments; label
is the spanner column label and the columns
are those columns that belong in this group.
Here, we’ll put the mpg_c
, mpg_h
, hp
, hp_rpm
, trq
, trq_rpm
columns under the Performance
spanner column, and the remaining columns won’t be grouped together. This single spanner column label is styled with Markdown by using the md()
helper.
# Put the first three columns under a spanner # column with the label 'Performance' tab <- tab %>% tab_spanner( label = "Performance", columns = vars(mpg_c, mpg_h, hp, hp_rpm, trq, trq_rpm) ) # Show the table tab
year | trim | trsmn | Performance | msrp | ||||||
---|---|---|---|---|---|---|---|---|---|---|
mpg_c | mpg_h | hp | hp_rpm | trq | trq_rpm | |||||
Germany | ||||||||||
BMW i8 | 2016 | Mega World Coupe | 6am | 28 | 29 | 357 | 5800 | 420 | 3700 | 140700 |
Mercedes-Benz AMG GT | 2016 | S Coupe | 7a | 16 | 22 | 503 | 6250 | 479 | 1750 | 129900 |
Italy | ||||||||||
Ferrari LaFerrari | 2015 | Base Coupe | 7a | 12 | 16 | 949 | 9000 | 664 | 6750 | 1416362 |
Lamborghini Aventador | 2015 | LP 700-4 Coupe | 7a | 11 | 18 | 700 | 8250 | 507 | 5500 | 397500 |
United States | ||||||||||
Dodge Viper | 2017 | GT Coupe | 6m | 12 | 19 | 645 | 5000 | 600 | 5000 | 95895 |
Ford GT | 2017 | Base Coupe | 7a | 11 | 18 | 647 | 6250 | 550 | 5900 | 447000 |
Japan | ||||||||||
Acura NSX | 2017 | Base Coupe | 9a | 21 | 22 | 573 | 6500 | 476 | 2000 | 156000 |
Nissan GT-R | 2016 | Premium Coupe | 6a | 16 | 22 | 545 | 6400 | 436 | 3200 | 101770 |
Sometimes we’d like to combine the data from two columns into a single column. The cols_merge()
function allows us to do this, we just need to describe how the data should be combined. For our table, let’s merge together the following pairs of columns:
mpg_c
and mpg_h
(miles per gallon in city and highway driving modes)hp
and hp_rpm
(horsepower and associated RPM)trq
and trq_rpm
(torque and associated RPM)The cols_merge()
function uses a col_1
column and a col_2
column. Once combined, the col_1
column will be retained and the col_2
column will be dropped. The pattern argument uses {1}
and {2}
to represent the content of col_1
and col_2
. Here, we can use string literals to add text like rpm
or the @
sign. Furthermore, because we are targeting an HTML table, we can use the <br>
tag to insert a linebreak.
Labeling columns essentially means that we are choosing display-friendly labels that are no longer simply the column names (the default label). The cols_label()
function makes this relabeling possible. It accepts a series of named arguments in the form of <column_name> = <column_label>, ...
.
# Perform three column merges to better present # MPG, HP, and torque; relabel all the remaining # columns for a nicer-looking presentation tab <- tab %>% cols_merge( vars(mpg_c, mpg_h), hide_columns = vars(mpg_h), pattern = "{1}c<br>{2}h" ) %>% cols_merge( vars(hp, hp_rpm), hide_columns = vars(hp_rpm), pattern = "{1}<br>@{2}rpm" ) %>% cols_merge( vars(trq, trq_rpm), hide_columns = vars(trq_rpm), pattern = "{1}<br>@{2}rpm" ) %>% cols_label( mpg_c = "MPG", hp = "HP", trq = "Torque", year = "Year", trim = "Trim", trsmn = "Transmission", msrp = "MSRP" ) # Show the table tab
Year | Trim | Transmission | Performance | MSRP | |||
---|---|---|---|---|---|---|---|
MPG | HP | Torque | |||||
Germany | |||||||
BMW i8 | 2016 | Mega World Coupe | 6am | 28c 29h |
357 @5800rpm |
420 @3700rpm |
140700 |
Mercedes-Benz AMG GT | 2016 | S Coupe | 7a | 16c 22h |
503 @6250rpm |
479 @1750rpm |
129900 |
Italy | |||||||
Ferrari LaFerrari | 2015 | Base Coupe | 7a | 12c 16h |
949 @9000rpm |
664 @6750rpm |
1416362 |
Lamborghini Aventador | 2015 | LP 700-4 Coupe | 7a | 11c 18h |
700 @8250rpm |
507 @5500rpm |
397500 |
United States | |||||||
Dodge Viper | 2017 | GT Coupe | 6m | 12c 19h |
645 @5000rpm |
600 @5000rpm |
95895 |
Ford GT | 2017 | Base Coupe | 7a | 11c 18h |
647 @6250rpm |
550 @5900rpm |
447000 |
Japan | |||||||
Acura NSX | 2017 | Base Coupe | 9a | 21c 22h |
573 @6500rpm |
476 @2000rpm |
156000 |
Nissan GT-R | 2016 | Premium Coupe | 6a | 16c 22h |
545 @6400rpm |
436 @3200rpm |
101770 |
There are a number of formatter functions, all with the general naming convention fmt*()
. The various formatters are convenient for applying formats to numeric or character values in the table’s field. Here, we will simply use fmt_currency()
on the msrp
column (we still refer to columns by their original names) to get USD currency will no decimal places. We’re not supplying anything for the rows
argument and this means we want to apply the formatting to the entire column of data.
# Format the `msrp` column to USD currency # with no display of the currency subunits tab <- tab %>% fmt_currency( columns = vars(msrp), currency = "USD", decimals = 0 ) # Show the table tab
Year | Trim | Transmission | Performance | MSRP | |||
---|---|---|---|---|---|---|---|
MPG | HP | Torque | |||||
Germany | |||||||
BMW i8 | 2016 | Mega World Coupe | 6am | 28c 29h |
357 @5800rpm |
420 @3700rpm |
$140,700 |
Mercedes-Benz AMG GT | 2016 | S Coupe | 7a | 16c 22h |
503 @6250rpm |
479 @1750rpm |
$129,900 |
Italy | |||||||
Ferrari LaFerrari | 2015 | Base Coupe | 7a | 12c 16h |
949 @9000rpm |
664 @6750rpm |
$1,416,362 |
Lamborghini Aventador | 2015 | LP 700-4 Coupe | 7a | 11c 18h |
700 @8250rpm |
507 @5500rpm |
$397,500 |
United States | |||||||
Dodge Viper | 2017 | GT Coupe | 6m | 12c 19h |
645 @5000rpm |
600 @5000rpm |
$95,895 |
Ford GT | 2017 | Base Coupe | 7a | 11c 18h |
647 @6250rpm |
550 @5900rpm |
$447,000 |
Japan | |||||||
Acura NSX | 2017 | Base Coupe | 9a | 21c 22h |
573 @6500rpm |
476 @2000rpm |
$156,000 |
Nissan GT-R | 2016 | Premium Coupe | 6a | 16c 22h |
545 @6400rpm |
436 @3200rpm |
$101,770 |
We can change the alignment of data in columns with cols_align()
. For our table, let’s center-align the mpg_c
, hp
, and trq
columns. All other columns will maintain their default alignments.
It’s sometimes useful to modify the default styles of table cells. We can do this in a targeted way with the tab_style()
function. That function require two key pieces of information: a style
definition, and one or more locations
(which cells should the styles be applied to?). The style
argument commonly uses the cells_styles()
helper function, which contains arguments for all the styles that are supported (use ?cells_styles
for more information on this). Here we will use a text size of 12px
in our targeted cells—both px(12)
and "12px"
work equally well here. We also use helper functions with the locations
argument and these are the cells_*()
functions. We would like to target the data cells in all columns except year
and msrp
so we need to use cells_body
and then supply our target columns to the columns
argument.
# Center-align three columns in the gt table # and modify the text size of a few columns # of data tab <- tab %>% cols_align( align = "center", columns = vars(mpg_c, hp, trq) ) %>% tab_style( style = cell_text(size = px(12)), locations = cells_body( columns = vars(trim, trsmn, mpg_c, hp, trq)) ) # Show the table tab
Year | Trim | Transmission | Performance | MSRP | |||
---|---|---|---|---|---|---|---|
MPG | HP | Torque | |||||
Germany | |||||||
BMW i8 | 2016 | Mega World Coupe | 6am | 28c 29h |
357 @5800rpm |
420 @3700rpm |
$140,700 |
Mercedes-Benz AMG GT | 2016 | S Coupe | 7a | 16c 22h |
503 @6250rpm |
479 @1750rpm |
$129,900 |
Italy | |||||||
Ferrari LaFerrari | 2015 | Base Coupe | 7a | 12c 16h |
949 @9000rpm |
664 @6750rpm |
$1,416,362 |
Lamborghini Aventador | 2015 | LP 700-4 Coupe | 7a | 11c 18h |
700 @8250rpm |
507 @5500rpm |
$397,500 |
United States | |||||||
Dodge Viper | 2017 | GT Coupe | 6m | 12c 19h |
645 @5000rpm |
600 @5000rpm |
$95,895 |
Ford GT | 2017 | Base Coupe | 7a | 11c 18h |
647 @6250rpm |
550 @5900rpm |
$447,000 |
Japan | |||||||
Acura NSX | 2017 | Base Coupe | 9a | 21c 22h |
573 @6500rpm |
476 @2000rpm |
$156,000 |
Nissan GT-R | 2016 | Premium Coupe | 6a | 16c 22h |
545 @6400rpm |
436 @3200rpm |
$101,770 |
A text transform via the text_transform()
function is a great way to further manipulate text in data cells (even after they’ve been formatted with the fmt*()
function). After targeting data cells with the cells_body()
location helper function, we supply a function to the fn
argument that processes a vector of text. If we intend to render as an HTML table, we can directly apply HTML tags in the transformation function. The function we provide here will build strings that read better in a display table.
# Transform the column of text in `trsmn` using # a custom function within `text_transform()`; # here `x` represents a character vector defined # in the `cells_body()` function tab <- tab %>% text_transform( locations = cells_body(columns = vars(trsmn)), fn = function(x) { # The first character of `x` always # indicates the number of transmission speeds speed <- substr(x, 1, 1) # We can carefully determine which transmission # type we have in `x` with a `dplyr::case_when()` # statement type <- dplyr::case_when( substr(x, 2, 3) == "am" ~ "Automatic/Manual", substr(x, 2, 2) == "m" ~ "Manual", substr(x, 2, 2) == "a" ~ "Automatic", substr(x, 2, 3) == "dd" ~ "Direct Drive" ) # Let's paste together the `speed` and `type` # vectors to create HTML text replacing `x` paste(speed, " Speed<br><em>", type, "</em>") } ) # Show the table tab
Year | Trim | Transmission | Performance | MSRP | |||
---|---|---|---|---|---|---|---|
MPG | HP | Torque | |||||
Germany | |||||||
BMW i8 | 2016 | Mega World Coupe | 6 Speed Automatic/Manual |
28c 29h |
357 @5800rpm |
420 @3700rpm |
$140,700 |
Mercedes-Benz AMG GT | 2016 | S Coupe | 7 Speed Automatic |
16c 22h |
503 @6250rpm |
479 @1750rpm |
$129,900 |
Italy | |||||||
Ferrari LaFerrari | 2015 | Base Coupe | 7 Speed Automatic |
12c 16h |
949 @9000rpm |
664 @6750rpm |
$1,416,362 |
Lamborghini Aventador | 2015 | LP 700-4 Coupe | 7 Speed Automatic |
11c 18h |
700 @8250rpm |
507 @5500rpm |
$397,500 |
United States | |||||||
Dodge Viper | 2017 | GT Coupe | 6 Speed Manual |
12c 19h |
645 @5000rpm |
600 @5000rpm |
$95,895 |
Ford GT | 2017 | Base Coupe | 7 Speed Automatic |
11c 18h |
647 @6250rpm |
550 @5900rpm |
$447,000 |
Japan | |||||||
Acura NSX | 2017 | Base Coupe | 9 Speed Automatic |
21c 22h |
573 @6500rpm |
476 @2000rpm |
$156,000 |
Nissan GT-R | 2016 | Premium Coupe | 6 Speed Automatic |
16c 22h |
545 @6400rpm |
436 @3200rpm |
$101,770 |
The tab_header()
function allows us to place a table title and, optionally, a subtitle at the top of the display table. It’s generally a good idea to have both in a table, where the subtitle provides additional information (though that isn’t quite the case in our example below).
# Add a table title and subtitle; we can use # markdown with the `md()` helper function tab <- tab %>% tab_header( title = md("The Cars of **gtcars**"), subtitle = "These are some fine automobiles" ) # Show the table tab
The Cars of gtcars | |||||||
---|---|---|---|---|---|---|---|
These are some fine automobiles | |||||||
Year | Trim | Transmission | Performance | MSRP | |||
MPG | HP | Torque | |||||
Germany | |||||||
BMW i8 | 2016 | Mega World Coupe | 6 Speed Automatic/Manual |
28c 29h |
357 @5800rpm |
420 @3700rpm |
$140,700 |
Mercedes-Benz AMG GT | 2016 | S Coupe | 7 Speed Automatic |
16c 22h |
503 @6250rpm |
479 @1750rpm |
$129,900 |
Italy | |||||||
Ferrari LaFerrari | 2015 | Base Coupe | 7 Speed Automatic |
12c 16h |
949 @9000rpm |
664 @6750rpm |
$1,416,362 |
Lamborghini Aventador | 2015 | LP 700-4 Coupe | 7 Speed Automatic |
11c 18h |
700 @8250rpm |
507 @5500rpm |
$397,500 |
United States | |||||||
Dodge Viper | 2017 | GT Coupe | 6 Speed Manual |
12c 19h |
645 @5000rpm |
600 @5000rpm |
$95,895 |
Ford GT | 2017 | Base Coupe | 7 Speed Automatic |
11c 18h |
647 @6250rpm |
550 @5900rpm |
$447,000 |
Japan | |||||||
Acura NSX | 2017 | Base Coupe | 9 Speed Automatic |
21c 22h |
573 @6500rpm |
476 @2000rpm |
$156,000 |
Nissan GT-R | 2016 | Premium Coupe | 6 Speed Automatic |
16c 22h |
545 @6400rpm |
436 @3200rpm |
$101,770 |
A source note can be added below the display table using the tab_source_note()
function. We can even add multiple source notes with multiple calls of that function. Here, we supply a web URL and by using Markdown (with md()
) it’s easy to create a link to the source of the data.
# Add a source note to the bottom of the table; this # appears below the footnotes tab <- tab %>% tab_source_note( source_note = md( "Source: Various pages within the Edmonds website.") ) # Show the table tab
The Cars of gtcars | |||||||
---|---|---|---|---|---|---|---|
These are some fine automobiles | |||||||
Year | Trim | Transmission | Performance | MSRP | |||
MPG | HP | Torque | |||||
Germany | |||||||
BMW i8 | 2016 | Mega World Coupe | 6 Speed Automatic/Manual |
28c 29h |
357 @5800rpm |
420 @3700rpm |
$140,700 |
Mercedes-Benz AMG GT | 2016 | S Coupe | 7 Speed Automatic |
16c 22h |
503 @6250rpm |
479 @1750rpm |
$129,900 |
Italy | |||||||
Ferrari LaFerrari | 2015 | Base Coupe | 7 Speed Automatic |
12c 16h |
949 @9000rpm |
664 @6750rpm |
$1,416,362 |
Lamborghini Aventador | 2015 | LP 700-4 Coupe | 7 Speed Automatic |
11c 18h |
700 @8250rpm |
507 @5500rpm |
$397,500 |
United States | |||||||
Dodge Viper | 2017 | GT Coupe | 6 Speed Manual |
12c 19h |
645 @5000rpm |
600 @5000rpm |
$95,895 |
Ford GT | 2017 | Base Coupe | 7 Speed Automatic |
11c 18h |
647 @6250rpm |
550 @5900rpm |
$447,000 |
Japan | |||||||
Acura NSX | 2017 | Base Coupe | 9 Speed Automatic |
21c 22h |
573 @6500rpm |
476 @2000rpm |
$156,000 |
Nissan GT-R | 2016 | Premium Coupe | 6 Speed Automatic |
16c 22h |
545 @6400rpm |
436 @3200rpm |
$101,770 |
Source: Various pages within the Edmonds website. |
gtcars
table and Adding FootnotesLet’s bring it all together by putting together all the statements we developed for gtcars_8
, and applying that to the complete gtcars
dataset. At the same time, we’ll add a few interesting footnotes and our specific requirements for footnoting are:
a. identifying the car with the best gas mileage (city)
b. identifying the car with the highest horsepower
c. stating the currency of the MSRP
The tab_footnote()
function expects note text for the footnote
argument, and locations for where the footnote mark should be attached. It will handle the placement of the footnote mark and also place the footnote in the footnotes area. Here, we’ll use the cells_body()
location helper function. There are several location helper functions for targeting all parts of the table (e.g,. cells_body()
, cells_stub()
, etc.). Each location helper has their own interface for targeting cells so refer to the documentation for examples of how they work in practice.
What cells_body()
expects is columns
(column names, which can be conveniently provided in vars()
) and rows
(which can be a vector of row names or row indices). The cells_stub()
location helper only expects a vector of rows
. For cells_column_labels()
, we can either provided targeted column labels in the columns
argument or spanner column labels in the groups
argument. Here, we are targeting a footnote to the msrp
column label so we will use columns = vars(msrp)
.
In terms of structuring the code, we’re taking all the previous statements and putting those in first. It should be noted that the order of the statements does not matter to the end result, we could also put in all of the tab_footnote()
statements first (again, any in order) and expect the same output table.
# Use dplyr functions to get the car with the best city gas mileage; # this will be used to target the correct cell for a footnote best_gas_mileage_city <- gtcars %>% dplyr::arrange(desc(mpg_c)) %>% dplyr::slice(1) %>% dplyr::mutate(car = paste(mfr, model)) %>% dplyr::pull(car) # Use dplyr functions to get the car with the highest horsepower # this will be used to target the correct cell for a footnote highest_horsepower <- gtcars %>% dplyr::arrange(desc(hp)) %>% dplyr::slice(1) %>% dplyr::mutate(car = paste(mfr, model)) %>% dplyr::pull(car) # Create a display table with `gtcars`, using all of the previous # statements piped together + additional `tab_footnote()` stmts tab <- gtcars %>% dplyr::arrange( factor(ctry_origin, levels = order_countries), mfr, desc(msrp) ) %>% dplyr::mutate(car = paste(mfr, model)) %>% dplyr::select(-mfr, -model) %>% dplyr::group_by(ctry_origin) %>% gt(rowname_col = "car") %>% cols_hide(columns = vars(drivetrain, bdy_style)) %>% cols_move( columns = vars(trsmn, mpg_c, mpg_h), after = vars(trim) ) %>% tab_spanner( label = "Performance", columns = vars(mpg_c, mpg_h, hp, hp_rpm, trq, trq_rpm) ) %>% cols_merge( vars(mpg_c, mpg_h), hide_columns = vars(mpg_h), pattern = "{1}c<br>{2}h" ) %>% cols_merge( vars(hp, hp_rpm), hide_columns = vars(hp_rpm), pattern = "{1}<br>@{2}rpm" ) %>% cols_merge( vars(trq, trq_rpm), hide_columns = vars(trq_rpm), pattern = "{1}<br>@{2}rpm" ) %>% cols_label( mpg_c = "MPG", hp = "HP", trq = "Torque", year = "Year", trim = "Trim", trsmn = "Transmission", msrp = "MSRP" ) %>% fmt_currency( columns = vars(msrp), currency = "USD", decimals = 0 ) %>% cols_align( align = "center", columns = vars(mpg_c, hp, trq) ) %>% tab_style( style = cell_text(size = px(12)), locations = cells_body( columns = vars(trim, trsmn, mpg_c, hp, trq) ) ) %>% text_transform( locations = cells_body(columns = vars(trsmn)), fn = function(x) { speed <- substr(x, 1, 1) type <- dplyr::case_when( substr(x, 2, 3) == "am" ~ "Automatic/Manual", substr(x, 2, 2) == "m" ~ "Manual", substr(x, 2, 2) == "a" ~ "Automatic", substr(x, 2, 3) == "dd" ~ "Direct Drive" ) paste(speed, " Speed<br><em>", type, "</em>") } ) %>% tab_header( title = md("The Cars of **gtcars**"), subtitle = "These are some fine automobiles" ) %>% tab_source_note( source_note = md( "Source: Various pages within the Edmonds website.") ) %>% tab_footnote( footnote = md("Best gas mileage (city) of all the **gtcars**."), locations = cells_body( columns = vars(mpg_c), rows = best_gas_mileage_city) ) %>% tab_footnote( footnote = md("The highest horsepower of all the **gtcars**."), locations = cells_body( columns = vars(hp), rows = highest_horsepower) ) %>% tab_footnote( footnote = "All prices in U.S. dollars (USD).", locations = cells_column_labels(columns = vars(msrp)) ) # Show the table tab
The Cars of gtcars | |||||||
---|---|---|---|---|---|---|---|
These are some fine automobiles | |||||||
Year | Trim | Transmission | Performance | MSRP1 | |||
MPG | HP | Torque | |||||
Germany | |||||||
Audi R8 | 2015 | 4.2 (Manual) Coupe | 6 Speed Manual |
11c 20h |
430 @7900rpm |
317 @4500rpm |
$115,900 |
Audi S8 | 2016 | Base Sedan | 8 Speed Automatic/Manual |
15c 25h |
520 @5800rpm |
481 @1700rpm |
$114,900 |
Audi RS 7 | 2016 | Quattro Hatchback | 8 Speed Automatic/Manual |
15c 25h |
560 @5700rpm |
516 @1750rpm |
$108,900 |
Audi S7 | 2016 | Prestige quattro Hatchback | 7 Speed Automatic |
17c 27h |
450 @5800rpm |
406 @1400rpm |
$82,900 |
Audi S6 | 2016 | Premium Plus quattro Sedan | 7 Speed Automatic |
18c 27h |
450 @5800rpm |
406 @1400rpm |
$70,900 |
BMW i8 | 2016 | Mega World Coupe | 6 Speed Automatic/Manual |
28c 29h2 |
357 @5800rpm |
420 @3700rpm |
$140,700 |
BMW M6 | 2016 | Base Coupe | 7 Speed Automatic |
15c 22h |
560 @6000rpm |
500 @1500rpm |
$113,400 |
BMW M5 | 2016 | Base Sedan | 7 Speed Automatic/Manual |
15c 22h |
560 @6000rpm |
500 @1500rpm |
$94,100 |
BMW 6-Series | 2016 | 640 I Coupe | 8 Speed Automatic/Manual |
20c 30h |
315 @5800rpm |
330 @1400rpm |
$77,300 |
BMW M4 | 2016 | Base Coupe | 6 Speed Manual |
17c 24h |
425 @5500rpm |
406 @1850rpm |
$65,700 |
Mercedes-Benz AMG GT | 2016 | S Coupe | 7 Speed Automatic |
16c 22h |
503 @6250rpm |
479 @1750rpm |
$129,900 |
Mercedes-Benz SL-Class | 2016 | SL400 Convertible | 7 Speed Automatic/Manual |
20c 27h |
329 @5250rpm |
354 @1600rpm |
$85,050 |
Porsche 911 | 2016 | Carrera Coupe | 7 Speed Manual |
20c 28h |
350 @7400rpm |
287 @5600rpm |
$84,300 |
Porsche Panamera | 2016 | Base Sedan | 7 Speed Automatic |
18c 28h |
310 @6200rpm |
295 @3750rpm |
$78,100 |
Porsche 718 Boxster | 2017 | Base Convertible | 6 Speed Manual |
21c 28h |
300 @6500rpm |
280 @1950rpm |
$56,000 |
Porsche 718 Cayman | 2017 | Base Coupe | 6 Speed Manual |
20c 29h |
300 @6500rpm |
280 @1950rpm |
$53,900 |
Italy | |||||||
Ferrari LaFerrari | 2015 | Base Coupe | 7 Speed Automatic |
12c 16h |
949 @9000rpm3 |
664 @6750rpm |
$1,416,362 |
Ferrari F12Berlinetta | 2015 | Base Coupe | 7 Speed Automatic |
11c 16h |
731 @8250rpm |
509 @6000rpm |
$319,995 |
Ferrari GTC4Lusso | 2017 | Base Coupe | 7 Speed Automatic |
12c 17h |
680 @8250rpm |
514 @5750rpm |
$298,000 |
Ferrari FF | 2015 | Base Coupe | 7 Speed Automatic |
11c 16h |
652 @8000rpm |
504 @6000rpm |
$295,000 |
Ferrari 458 Speciale | 2015 | Base Coupe | 7 Speed Automatic |
13c 17h |
597 @9000rpm |
398 @6000rpm |
$291,744 |
Ferrari 458 Spider | 2015 | Base | 7 Speed Automatic |
13c 17h |
562 @9000rpm |
398 @6000rpm |
$263,553 |
Ferrari 488 GTB | 2016 | Base Coupe | 7 Speed Automatic |
15c 22h |
661 @8000rpm |
561 @3000rpm |
$245,400 |
Ferrari 458 Italia | 2014 | Base Coupe | 7 Speed Automatic |
13c 17h |
562 @9000rpm |
398 @6000rpm |
$233,509 |
Ferrari California | 2015 | Base Convertible | 7 Speed Automatic |
16c 23h |
553 @7500rpm |
557 @4750rpm |
$198,973 |
Lamborghini Aventador | 2015 | LP 700-4 Coupe | 7 Speed Automatic |
11c 18h |
700 @8250rpm |
507 @5500rpm |
$397,500 |
Lamborghini Huracan | 2015 | LP 610-4 Coupe | 7 Speed Automatic |
16c 20h |
610 @8250rpm |
413 @6500rpm |
$237,250 |
Lamborghini Gallardo | 2014 | LP 550-2 Coupe | 6 Speed Automatic |
12c 20h |
550 @8000rpm |
398 @6500rpm |
$191,900 |
Maserati Granturismo | 2016 | Sport Coupe | 6 Speed Automatic/Manual |
13c 21h |
454 @7600rpm |
384 @4750rpm |
$132,825 |
Maserati Quattroporte | 2016 | S Sedan | 8 Speed Automatic/Manual |
16c 23h |
404 @5500rpm |
406 @1500rpm |
$99,900 |
Maserati Ghibli | 2016 | Base Sedan | 8 Speed Automatic/Manual |
17c 24h |
345 @5250rpm |
369 @1750rpm |
$70,600 |
United States | |||||||
Chevrolet Corvette | 2016 | Z06 Coupe | 7 Speed Manual |
15c 22h |
650 @6400rpm |
650 @3600rpm |
$88,345 |
Dodge Viper | 2017 | GT Coupe | 6 Speed Manual |
12c 19h |
645 @5000rpm |
600 @5000rpm |
$95,895 |
Ford GT | 2017 | Base Coupe | 7 Speed Automatic |
11c 18h |
647 @6250rpm |
550 @5900rpm |
$447,000 |
Tesla Model S | 2017 | 75D | 1 Speed Direct Drive |
NAc NAh |
259 @6100rpm |
243 @NArpm |
$74,500 |
Japan | |||||||
Acura NSX | 2017 | Base Coupe | 9 Speed Automatic |
21c 22h |
573 @6500rpm |
476 @2000rpm |
$156,000 |
Nissan GT-R | 2016 | Premium Coupe | 6 Speed Automatic |
16c 22h |
545 @6400rpm |
436 @3200rpm |
$101,770 |
United Kingdom | |||||||
Aston Martin Vanquish | 2016 | Base Coupe | 8 Speed Automatic/Manual |
13c 21h |
568 @6650rpm |
465 @5500rpm |
$287,250 |
Aston Martin DB11 | 2017 | Base Coupe | 8 Speed Automatic/Manual |
15c 21h |
608 @6500rpm |
516 @1500rpm |
$211,195 |
Aston Martin Rapide S | 2016 | Base Sedan | 8 Speed Automatic/Manual |
14c 21h |
552 @6650rpm |
465 @5500rpm |
$205,300 |
Aston Martin Vantage | 2016 | V8 GT (Manual) Coupe | 6 Speed Manual |
13c 19h |
430 @7300rpm |
361 @5000rpm |
$103,300 |
Bentley Continental GT | 2016 | V8 Coupe | 8 Speed Automatic/Manual |
15c 25h |
500 @6000rpm |
487 @1700rpm |
$198,500 |
Jaguar F-Type | 2016 | Base (Manual) Coupe | 6 Speed Manual |
16c 24h |
340 @6500rpm |
332 @3500rpm |
$65,000 |
Lotus Evora | 2017 | 2+2 Coupe | 6 Speed Manual |
16c 24h |
400 @7000rpm |
302 @3500rpm |
$91,900 |
McLaren 570 | 2016 | Base Coupe | 7 Speed Automatic |
16c 23h |
570 @7500rpm |
443 @5000rpm |
$184,900 |
Rolls-Royce Dawn | 2016 | Base Convertible | 8 Speed Automatic |
12c 19h |
563 @5250rpm |
575 @1500rpm |
$335,000 |
Rolls-Royce Wraith | 2016 | Base Coupe | 8 Speed Automatic |
13c 21h |
624 @5600rpm |
590 @1500rpm |
$304,350 |
Source: Various pages within the Edmonds website. | |||||||
1
All prices in U.S. dollars (USD).
2
Best gas mileage (city) of all the gtcars.
3
The highest horsepower of all the gtcars.
|
That is it. The final table looks pretty good and conveys the additional information we planned for. That table can be used in a lot of different places like R Markdown, Shiny, email messages… wherever HTML is accepted.