res_pred.Rd
Residuals or NPDE versus predicted values
res_pred( df, x = pm_axis_pred(), y = pm_axis_res(), xname = "value", xs = defx(), ys = defy(), ... ) wres_pred(df, ..., y = pm_axis_wres()) cwres_pred(df, ..., y = pm_axis_cwres()) cwresi_pred(df, y = pm_axis_cwresi(), ...) npde_pred(df, ..., y = pm_axis_npde(), hline = npde_ref())
df | data frame to plot |
---|---|
x | character name for x-axis data |
y | character name for y-axis data |
xname | glued into x-axis title |
xs | see |
ys | see |
... | |
hline | a list of parameters to pass to |
A single plot.
Since this function creates a scatter plot,
both the x
and y
columns must
be numeric.
The y axis name is always the name of the residual
(e.g. "Weighted residual"). Use the xname
argument
to add specific name and or unit to the dependent variable
(see the example).
A loess smooth and a horizontal reference line are layered on the plot.
#>