These methods modify the data in a mrgsims object and return a data frame. Contrast with the functions in mrgsims_modify.
# S3 method for mrgsims
pull(.data, ...)
# S3 method for mrgsims
filter(.data, ...)
# S3 method for mrgsims
group_by(.data, ..., add = FALSE, .add = FALSE)
# S3 method for mrgsims
distinct(.data, ..., .keep_all = FALSE)
# S3 method for mrgsims
mutate(.data, ...)
# S3 method for each
summarise(.data, funs, ...)
# S3 method for mrgsims
summarise(.data, ...)
# S3 method for mrgsims
do(.data, ..., .dots)
# S3 method for mrgsims
select(.data, ...)
# S3 method for mrgsims
slice(.data, ...)
as_data_frame.mrgsims(.data_, ...)
# S3 method for mrgsims
as_tibble(.data_, ...)
as.tbl.mrgsims(x, ...)
an mrgsims object; passed to various dplyr
functions
passed to other methods
passed to dplyr::group_by (for dplyr < 1.0.0
)
passed to dplyr::group_by (for dplyr >= 1.0.0
)
passed to dplyr::distinct
passed to dplyr::summarise_each
passed to various dplyr
functions
mrgsims object
passed to dplyr::as.tbl
For the select_sims
function, the dots ...
must be either
compartment names or variables in $CAPTURE
. An error will be
generated if no valid names are selected or the names for selection are
not found in the simulated output.
out <- mrgsim(house(), events = ev(amt = 100), end = 5, delta=1)
dplyr::filter(out, time==2)
#> # A tibble: 1 × 7
#> ID time GUT CENT RESP DV CP
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 2 9.07 85.0 36.4 4.25 4.25
dplyr::mutate(out, label = "abc")
#> # A tibble: 7 × 8
#> ID time GUT CENT RESP DV CP label
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 1 0 0 0 50 0 0 abc
#> 2 1 0 100 0 50 0 0 abc
#> 3 1 1 30.1 67.8 41.4 3.39 3.39 abc
#> 4 1 2 9.07 85.0 36.4 4.25 4.25 abc
#> 5 1 3 2.73 87.0 35.1 4.35 4.35 abc
#> 6 1 4 0.823 84.6 35.0 4.23 4.23 abc
#> 7 1 5 0.248 81.0 35.4 4.05 4.05 abc
dplyr::select(out, time, RESP, CP)
#> # A tibble: 7 × 3
#> time RESP CP
#> <dbl> <dbl> <dbl>
#> 1 0 50 0
#> 2 0 50 0
#> 3 1 41.4 3.39
#> 4 2 36.4 4.25
#> 5 3 35.1 4.35
#> 6 4 35.0 4.23
#> 7 5 35.4 4.05